Improving Pelvic Floor Muscle Training with AI: A Novel Quality Assessment System for Pelvic Floor Dysfunction

计算机科学 分类器(UML) 随机森林 卷积神经网络 人工智能 评定量表 提取器 机器学习 数学 工程类 统计 工艺工程
作者
Batoul El‐Sayegh,Chantale Dumoulin,François Leduc-Primeau,Mohamad Sawan
出处
期刊:Sensors [MDPI AG]
卷期号:24 (21): 6937-6937
标识
DOI:10.3390/s24216937
摘要

The first line of treatment for urinary incontinence is pelvic floor muscle (PFM) training, aimed at reducing leakage episodes by strengthening these muscles. However, many women struggle with performing correct PFM contractions or have misconceptions about their contractions. To address this issue, we present a novel PFM contraction quality assessment system. This system combines a PFM contraction detector with a maximal PFM contraction performance classifier. The contraction detector first identifies whether or not a PFM contraction was performed. Then, the contraction classifier autonomously quantifies the quality of maximal PFM contractions across different features, which are also combined into an overall rating. Both algorithms are based on artificial intelligence (AI) methods. The detector relies on a convolutional neural network, while the contraction classifier uses a custom feature extractor followed by a random forest classifier to predict the strength rating based on the modified Oxford scale. The AI algorithms were trained and tested using datasets measured by vaginal dynamometry, combined in some cases with digital assessment results from expert physiotherapists. The contraction detector was trained on one dataset and then tested on two datasets measured with different dynamometers, achieving 97% accuracy on the first dataset and 100% accuracy on the second. For the contraction performance classifier, the results demonstrate that important clinical features can be extracted automatically with an acceptable error. Furthermore, the contraction classifier is able to predict the strength rating within a ±1 scale point with 97% accuracy. These results demonstrate the system’s potential to enhance PFM training and rehabilitation by enabling women to monitor and improve their PFM contractions autonomously.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤姆完成签到,获得积分10
2秒前
firefly完成签到 ,获得积分10
4秒前
与离完成签到 ,获得积分10
4秒前
8秒前
无花果应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
庾尔风发布了新的文献求助10
14秒前
独指蜗牛完成签到 ,获得积分10
16秒前
在水一方应助格子内裤采纳,获得10
20秒前
FashionBoy应助庾尔风采纳,获得10
20秒前
老刘不吃香菜完成签到,获得积分10
20秒前
涛1完成签到 ,获得积分10
22秒前
脑洞疼应助Maestro_S采纳,获得50
23秒前
chun完成签到 ,获得积分10
27秒前
Tianling完成签到,获得积分0
27秒前
32秒前
stiger应助小乌鸦采纳,获得10
32秒前
修fei完成签到 ,获得积分10
32秒前
李蝶儿完成签到 ,获得积分10
32秒前
格子内裤发布了新的文献求助10
37秒前
41秒前
小蘑菇应助刘贺采纳,获得10
44秒前
柑橘完成签到 ,获得积分10
46秒前
49秒前
刘贺完成签到,获得积分20
52秒前
孙非完成签到,获得积分10
52秒前
55秒前
Bella完成签到 ,获得积分10
56秒前
体贴凌柏发布了新的文献求助10
56秒前
2316690509完成签到 ,获得积分10
56秒前
马华化完成签到,获得积分0
58秒前
年轻绮波完成签到,获得积分10
58秒前
刘贺发布了新的文献求助10
59秒前
RMY发布了新的文献求助10
1分钟前
能干冰菱完成签到,获得积分20
1分钟前
噼里啪啦发布了新的文献求助10
1分钟前
潇洒的长颈鹿完成签到 ,获得积分10
1分钟前
儒雅的如松完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550