Point Cloud Registration in Laparoscopic Liver Surgery Using Keypoint Correspondence Registration Network

图像配准 点云 人工智能 计算机视觉 计算机科学 图像(数学)
作者
Yirui Zhang,Yanni Zou,Peter Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (2): 749-760 被引量:8
标识
DOI:10.1109/tmi.2024.3457228
摘要

Laparoscopic liver surgery is a newly developed minimally invasive technique and represents an inevitable trend in the future development of surgical methods. By using augmented reality (AR) technology to overlay preoperative CT models with intraoperative laparoscopic videos, surgeons can accurately locate blood vessels and tumors, significantly enhancing the safety and precision of surgeries. Point cloud registration technology is key to achieving this effect. However, there are two major challenges in registering the CT model with the point cloud surface reconstructed from intraoperative laparoscopy. First, the surface features of the organ are not prominent. Second, due to the limited field of view of the laparoscope, the reconstructed surface typically represents only a very small portion of the entire organ. To address these issues, this paper proposes the keypoint correspondence registration network (KCR-Net). This network first uses the neighborhood feature fusion module (NFFM) to aggregate and interact features from different regions and structures within a pair of point clouds to obtain comprehensive feature representations. Then, through correspondence generation, it directly generates keypoints and their corresponding weights, with keypoints located in the common structures of the point clouds to be registered, and corresponding weights learned automatically by the network. This approach enables accurate point cloud registration even under conditions of extremely low overlap. Experiments conducted on the ModelNet40, 3Dircadb, DePoLL demonstrate that our method achieves excellent registration accuracy and is capable of meeting the requirements of real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石竹青完成签到,获得积分10
刚刚
离希夷完成签到,获得积分10
1秒前
阿杰发布了新的文献求助10
1秒前
LI完成签到,获得积分20
2秒前
狂野幻梅完成签到 ,获得积分10
2秒前
月光完成签到,获得积分10
2秒前
2秒前
领导范儿应助薛文采纳,获得10
3秒前
banfen发布了新的文献求助10
3秒前
搜集达人应助辛勤采纳,获得10
3秒前
李健应助冯宝宝采纳,获得10
3秒前
华仔应助教授王采纳,获得10
3秒前
Phil完成签到 ,获得积分10
3秒前
邻家小胖完成签到,获得积分10
4秒前
邓娅琴发布了新的文献求助10
4秒前
4秒前
搜集达人应助jinhaisong采纳,获得10
4秒前
摸俞发布了新的文献求助10
4秒前
昏睡的一寡完成签到,获得积分20
4秒前
乐观的科研小狗完成签到,获得积分20
5秒前
SSR发布了新的文献求助10
6秒前
文静的笑阳完成签到,获得积分10
6秒前
6秒前
JamesPei应助俊逸的问兰采纳,获得10
6秒前
李爱国应助藜誌采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
英俊的铭应助太清采纳,获得10
7秒前
我是微风完成签到,获得积分10
8秒前
8秒前
8秒前
555完成签到,获得积分10
8秒前
懵懂的妙松完成签到,获得积分10
9秒前
慕青应助开朗以珊采纳,获得10
9秒前
banfen完成签到,获得积分10
9秒前
箱箱完成签到,获得积分10
9秒前
9秒前
情怀应助犹豫的笑旋采纳,获得10
9秒前
乾坤侠客LW完成签到,获得积分10
9秒前
CodeCraft应助小明同学采纳,获得10
10秒前
执着的亦凝完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699639
求助须知:如何正确求助?哪些是违规求助? 5132174
关于积分的说明 15227194
捐赠科研通 4854644
什么是DOI,文献DOI怎么找? 2604831
邀请新用户注册赠送积分活动 1556206
关于科研通互助平台的介绍 1514427