亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point Cloud Registration in Laparoscopic Liver Surgery Using Keypoint Correspondence Registration Network

图像配准 点云 人工智能 计算机视觉 计算机科学 图像(数学)
作者
Yirui Zhang,Yanni Zou,Peter Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3457228
摘要

Laparoscopic liver surgery is a newly developed minimally invasive technique and represents an inevitable trend in the future development of surgical methods. By using augmented reality (AR) technology to overlay preoperative CT models with intraoperative laparoscopic videos, surgeons can accurately locate blood vessels and tumors, significantly enhancing the safety and precision of surgeries. Point cloud registration technology is key to achieving this effect. However, there are two major challenges in registering the CT model with the point cloud surface reconstructed from intraoperative laparoscopy. First, the surface features of the organ are not prominent. Second, due to the limited field of view of the laparoscope, the reconstructed surface typically represents only a very small portion of the entire organ. To address these issues, this paper proposes the keypoint correspondence registration network (KCR-Net). This network first uses the neighborhood feature fusion module (NFFM) to aggregate and interact features from different regions and structures within a pair of point clouds to obtain comprehensive feature representations. Then, through correspondence generation, it directly generates keypoints and their corresponding weights, with keypoints located in the common structures of the point clouds to be registered, and corresponding weights learned automatically by the network. This approach enables accurate point cloud registration even under conditions of extremely low overlap. Experiments conducted on the ModelNet40, 3Dircadb, DePoLL demonstrate that our method achieves excellent registration accuracy and is capable of meeting the requirements of real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Magali发布了新的文献求助10
18秒前
小布完成签到 ,获得积分10
19秒前
华仔应助lalallaal采纳,获得10
20秒前
YiWeiYing完成签到,获得积分10
47秒前
啦啦啦完成签到 ,获得积分10
50秒前
深情安青应助jason采纳,获得10
53秒前
冰糖葫芦娃完成签到,获得积分10
1分钟前
1分钟前
虞鱼瑜发布了新的文献求助10
1分钟前
YiWeiYing发布了新的文献求助10
1分钟前
虞鱼瑜完成签到,获得积分10
1分钟前
1分钟前
呼风唤雨发布了新的文献求助10
1分钟前
谢谢谢完成签到 ,获得积分10
1分钟前
呼风唤雨完成签到,获得积分10
1分钟前
努力奋斗完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jason发布了新的文献求助10
1分钟前
爱做实验的泡利完成签到,获得积分10
1分钟前
可爱的你发布了新的文献求助30
2分钟前
莞尔wr1完成签到 ,获得积分10
2分钟前
NPC应助lxlxllx89采纳,获得10
2分钟前
冰激凌完成签到,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
2分钟前
3分钟前
3分钟前
悠悠发布了新的文献求助10
3分钟前
邹醉蓝完成签到,获得积分10
3分钟前
634301059完成签到 ,获得积分10
3分钟前
悠悠完成签到,获得积分20
3分钟前
吃不饱星球球长应助jason采纳,获得10
3分钟前
3分钟前
李爱国应助悠悠采纳,获得10
3分钟前
3分钟前
充电宝应助chiyudoubao采纳,获得10
3分钟前
Lucas应助gulmira采纳,获得10
4分钟前
wanci应助Dr.Leon采纳,获得10
4分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068077
求助须知:如何正确求助?哪些是违规求助? 2722010
关于积分的说明 7475961
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256116
科研通“疑难数据库(出版商)”最低求助积分说明 609454
版权声明 596795