可信赖性
心理学
计算机科学
社会心理学
语言学
哲学
作者
Nejc Plohl,Izidor Mlakar,Letizia Aquilino,Piercosma Bisconti,Urška Smrke
标识
DOI:10.1080/10447318.2024.2384821
摘要
Exposure to false information is becoming a common occurrence in our daily lives. New developments in artificial intelligence are now used to produce increasingly sophisticated multimedia false content, such as deepfakes, making false information even more challenging to detect and combat. This creates expansive opportunities to mislead individuals into believing fabricated claims and negatively influence their attitudes and behavior. Therefore, a better understanding of how individuals perceive such content and the variables related to the perceived trustworthiness of deepfakes is needed. In the present study, we developed and validated the Perceived Deepfake Trustworthiness Questionnaire (PDTQ) in English, Italian, and Slovene. This was done in three phases. First, we developed the initial pool of items by reviewing previous studies, generating items via interviews and surveys, and employing artificial intelligence. Second, we shortened and adapted the questionnaire according to experts' evaluation of content validity and translated the questionnaire into Italian and Slovene. Lastly, we evaluated the psychometric characteristics via a cross-sectional study in three languages (N = 733). The exploratory factor analyses suggested a two-factor solution, with the first factor measuring the perceived trustworthiness of the content and the second measuring the perceived trustworthiness of the presentation. This factorial structure was replicated in confirmatory factor analyses. Moreover, our analyses provided support for PDTQ's reliability, measurement invariance across all three languages, and its construct and incremental validity. As such, the PDTQ is a reliable, measurement invariant, and valid tool for comprehensive exploration of individuals' perception of deepfake videos.
科研通智能强力驱动
Strongly Powered by AbleSci AI