Detection and quantification of groundnut oil adulteration with machine learning using a comparative approach with NIRS and UV–VIS

化学计量学 偏最小二乘回归 食品科学 植物油 化学 线性判别分析 色谱法 花生油 棕榈油 主成分分析 椰子油 数学 近红外光谱 原材料 生物 统计 神经科学 有机化学
作者
John‐Lewis Zinia Zaukuu,Manal Napari Adam,Abena Amoakoa Nkansah,Eric Tetteh Mensah
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70297-7
摘要

Abstract Groundnut oil is known as a good source of essential fatty acids which are significant in the physiological development of the human body. It has a distinctive fragrant making it ideal for cooking which contribute to its demand on the market. However, some groundnut oil producers have been suspected to produce groundnut oil by blending it with cheaper oils especially palm olein at different concentrations or by adding groundnut flavor to palm olein. Over the years, there have been several methods to detect adulteration in oils which are time-consuming and expensive. Near infrared (NIR) and ultraviolet–visible (UV–Vis) spectroscopies are cheap and rapid methods for oil adulteration. This present study aimed to apply NIR and UV–Vis in combination with chemometrics to develop models for prediction and quantification of groundnut oil adulteration. Using principal component analysis (PCA) scores, pure and prepared adulterated samples showed overlapping showing similarities between them. Linear discriminant analysis (LDA) models developed from NIR and UV–Vis gave an average cross-validation accuracy of 92.61% and 62.14% respectively for pure groundnut oil and adulterated samples with palm olein at 0, 1, 3, 5, 10, 20, 30, 40 and 50% v/v. With partial least squares regression free fatty acid, color parameters, peroxide and iodine values could be predicted with R 2 CV’s up to 0.8799 and RMSECV’s lower than 3 ml/100 ml for NIR spectra and R 2 CV’s up to 0.81 and RMSECV’s lower than 4 ml/100 ml for UV–Vis spectra. NIR spectra produced better models as compared to UV–Vis spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
退后分裂搁浅完成签到,获得积分10
1秒前
香蕉靖雁发布了新的文献求助10
4秒前
5秒前
万能图书馆应助Ado采纳,获得10
5秒前
科目三应助轻松的剑采纳,获得30
5秒前
所所应助虚幻羊采纳,获得10
5秒前
7秒前
大模型应助星期八采纳,获得10
8秒前
9秒前
qingzhiwu完成签到,获得积分10
10秒前
无花果应助高挑的梦芝采纳,获得10
10秒前
XZZH完成签到,获得积分10
11秒前
蝈蝈蝈完成签到 ,获得积分10
11秒前
13秒前
13秒前
Ava应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
kami完成签到,获得积分10
17秒前
mochi关注了科研通微信公众号
17秒前
17秒前
17秒前
18秒前
18秒前
19秒前
威武的蘑菇完成签到,获得积分10
20秒前
hxxxxxuan完成签到,获得积分10
21秒前
星期八发布了新的文献求助10
21秒前
大个应助Tomsen采纳,获得10
22秒前
薇薇早睡早起完成签到,获得积分10
22秒前
温暖幻桃发布了新的文献求助10
23秒前
Akim应助Yan采纳,获得10
23秒前
乐乐应助研友_LJGoXn采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003