Detection and quantification of groundnut oil adulteration with machine learning using a comparative approach with NIRS and UV–VIS

化学计量学 偏最小二乘回归 食品科学 植物油 化学 线性判别分析 色谱法 花生油 棕榈油 主成分分析 椰子油 数学 近红外光谱 原材料 生物 统计 有机化学 神经科学
作者
John‐Lewis Zinia Zaukuu,Manal Napari Adam,Abena Amoakoa Nkansah,Eric Tetteh Mensah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70297-7
摘要

Abstract Groundnut oil is known as a good source of essential fatty acids which are significant in the physiological development of the human body. It has a distinctive fragrant making it ideal for cooking which contribute to its demand on the market. However, some groundnut oil producers have been suspected to produce groundnut oil by blending it with cheaper oils especially palm olein at different concentrations or by adding groundnut flavor to palm olein. Over the years, there have been several methods to detect adulteration in oils which are time-consuming and expensive. Near infrared (NIR) and ultraviolet–visible (UV–Vis) spectroscopies are cheap and rapid methods for oil adulteration. This present study aimed to apply NIR and UV–Vis in combination with chemometrics to develop models for prediction and quantification of groundnut oil adulteration. Using principal component analysis (PCA) scores, pure and prepared adulterated samples showed overlapping showing similarities between them. Linear discriminant analysis (LDA) models developed from NIR and UV–Vis gave an average cross-validation accuracy of 92.61% and 62.14% respectively for pure groundnut oil and adulterated samples with palm olein at 0, 1, 3, 5, 10, 20, 30, 40 and 50% v/v. With partial least squares regression free fatty acid, color parameters, peroxide and iodine values could be predicted with R 2 CV’s up to 0.8799 and RMSECV’s lower than 3 ml/100 ml for NIR spectra and R 2 CV’s up to 0.81 and RMSECV’s lower than 4 ml/100 ml for UV–Vis spectra. NIR spectra produced better models as compared to UV–Vis spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhenghua完成签到,获得积分20
1秒前
方法法国衣服头发完成签到,获得积分10
3秒前
llll完成签到 ,获得积分10
4秒前
4秒前
5秒前
梓辰完成签到 ,获得积分10
5秒前
nakl完成签到,获得积分10
7秒前
CT完成签到,获得积分20
8秒前
呵呵应助XZC采纳,获得10
9秒前
10秒前
困屁鱼完成签到 ,获得积分10
11秒前
123完成签到,获得积分10
12秒前
MCRong应助白华苍松采纳,获得20
13秒前
经海亦发布了新的文献求助10
13秒前
orixero应助Chloe采纳,获得10
16秒前
L3完成签到,获得积分10
16秒前
17秒前
Soleil发布了新的文献求助10
18秒前
18秒前
Luelin完成签到 ,获得积分10
19秒前
隐形曼青应助bee采纳,获得10
20秒前
经海亦完成签到,获得积分10
20秒前
cao_bq发布了新的文献求助10
21秒前
22秒前
热心梦安完成签到 ,获得积分10
24秒前
24秒前
呆瓜完成签到,获得积分10
25秒前
Yang22完成签到,获得积分10
25秒前
yuancw完成签到 ,获得积分10
26秒前
念姬完成签到 ,获得积分10
27秒前
27秒前
YXHTCM完成签到,获得积分10
27秒前
嘻嘻嘻完成签到,获得积分10
27秒前
丘比特应助DCC采纳,获得10
28秒前
哈哈哈哈完成签到 ,获得积分10
28秒前
Soleil完成签到,获得积分20
30秒前
科研通AI2S应助super chan采纳,获得10
30秒前
甜甜信封完成签到,获得积分10
31秒前
31秒前
ys1111完成签到 ,获得积分10
32秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925