Detection and quantification of groundnut oil adulteration with machine learning using a comparative approach with NIRS and UV–VIS

化学计量学 偏最小二乘回归 食品科学 植物油 化学 线性判别分析 色谱法 花生油 棕榈油 主成分分析 椰子油 数学 近红外光谱 原材料 生物 统计 有机化学 神经科学
作者
John‐Lewis Zinia Zaukuu,Manal Napari Adam,Abena Amoakoa Nkansah,Eric Tetteh Mensah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70297-7
摘要

Abstract Groundnut oil is known as a good source of essential fatty acids which are significant in the physiological development of the human body. It has a distinctive fragrant making it ideal for cooking which contribute to its demand on the market. However, some groundnut oil producers have been suspected to produce groundnut oil by blending it with cheaper oils especially palm olein at different concentrations or by adding groundnut flavor to palm olein. Over the years, there have been several methods to detect adulteration in oils which are time-consuming and expensive. Near infrared (NIR) and ultraviolet–visible (UV–Vis) spectroscopies are cheap and rapid methods for oil adulteration. This present study aimed to apply NIR and UV–Vis in combination with chemometrics to develop models for prediction and quantification of groundnut oil adulteration. Using principal component analysis (PCA) scores, pure and prepared adulterated samples showed overlapping showing similarities between them. Linear discriminant analysis (LDA) models developed from NIR and UV–Vis gave an average cross-validation accuracy of 92.61% and 62.14% respectively for pure groundnut oil and adulterated samples with palm olein at 0, 1, 3, 5, 10, 20, 30, 40 and 50% v/v. With partial least squares regression free fatty acid, color parameters, peroxide and iodine values could be predicted with R 2 CV’s up to 0.8799 and RMSECV’s lower than 3 ml/100 ml for NIR spectra and R 2 CV’s up to 0.81 and RMSECV’s lower than 4 ml/100 ml for UV–Vis spectra. NIR spectra produced better models as compared to UV–Vis spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
深情安青应助shatang采纳,获得10
2秒前
zxx5012发布了新的文献求助10
2秒前
芥丶子完成签到,获得积分10
3秒前
曾开心完成签到,获得积分10
3秒前
平淡南霜发布了新的文献求助10
3秒前
Blue_Pig发布了新的文献求助10
4秒前
李健的小迷弟应助逐风采纳,获得30
4秒前
yatou5651发布了新的文献求助10
5秒前
Akim应助和谐乌龟采纳,获得10
5秒前
peng完成签到,获得积分20
6秒前
CipherSage应助汉关采纳,获得10
6秒前
7秒前
7秒前
7秒前
丘比特应助XM采纳,获得10
7秒前
bkagyin应助Blue_Pig采纳,获得10
8秒前
9秒前
10秒前
10秒前
完美世界应助加油加油采纳,获得10
11秒前
11秒前
12秒前
ns发布了新的文献求助30
14秒前
11111发布了新的文献求助10
14秒前
15秒前
药学牛马完成签到,获得积分10
15秒前
张zi发布了新的文献求助10
16秒前
yatou5651发布了新的文献求助10
17秒前
17秒前
小魏不学无术完成签到,获得积分10
17秒前
木棉发布了新的文献求助10
17秒前
A1234发布了新的文献求助10
18秒前
英俊的铭应助弄井采纳,获得30
18秒前
小二郎应助Dean采纳,获得10
19秒前
故意的冰淇淋完成签到 ,获得积分10
19秒前
19秒前
远方完成签到,获得积分10
20秒前
kiminonawa完成签到,获得积分0
21秒前
zrz完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808