Detection and quantification of groundnut oil adulteration with machine learning using a comparative approach with NIRS and UV–VIS

化学计量学 偏最小二乘回归 食品科学 植物油 化学 线性判别分析 色谱法 花生油 棕榈油 主成分分析 椰子油 数学 近红外光谱 原材料 生物 统计 有机化学 神经科学
作者
John‐Lewis Zinia Zaukuu,Manal Napari Adam,Abena Amoakoa Nkansah,Eric Tetteh Mensah
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70297-7
摘要

Abstract Groundnut oil is known as a good source of essential fatty acids which are significant in the physiological development of the human body. It has a distinctive fragrant making it ideal for cooking which contribute to its demand on the market. However, some groundnut oil producers have been suspected to produce groundnut oil by blending it with cheaper oils especially palm olein at different concentrations or by adding groundnut flavor to palm olein. Over the years, there have been several methods to detect adulteration in oils which are time-consuming and expensive. Near infrared (NIR) and ultraviolet–visible (UV–Vis) spectroscopies are cheap and rapid methods for oil adulteration. This present study aimed to apply NIR and UV–Vis in combination with chemometrics to develop models for prediction and quantification of groundnut oil adulteration. Using principal component analysis (PCA) scores, pure and prepared adulterated samples showed overlapping showing similarities between them. Linear discriminant analysis (LDA) models developed from NIR and UV–Vis gave an average cross-validation accuracy of 92.61% and 62.14% respectively for pure groundnut oil and adulterated samples with palm olein at 0, 1, 3, 5, 10, 20, 30, 40 and 50% v/v. With partial least squares regression free fatty acid, color parameters, peroxide and iodine values could be predicted with R 2 CV’s up to 0.8799 and RMSECV’s lower than 3 ml/100 ml for NIR spectra and R 2 CV’s up to 0.81 and RMSECV’s lower than 4 ml/100 ml for UV–Vis spectra. NIR spectra produced better models as compared to UV–Vis spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
专注完成签到 ,获得积分10
1秒前
A2QD发布了新的文献求助10
2秒前
竹筏过海完成签到,获得积分0
3秒前
ddc_0819发布了新的文献求助10
3秒前
perdgs发布了新的文献求助10
4秒前
sly发布了新的文献求助10
4秒前
Truman发布了新的文献求助10
4秒前
orixero应助健壮的以莲采纳,获得10
4秒前
ChinaNiu完成签到,获得积分10
4秒前
我是老大应助哈密瓜采纳,获得10
4秒前
张泽轩发布了新的文献求助10
5秒前
咔咔完成签到,获得积分10
6秒前
6秒前
石头完成签到,获得积分10
9秒前
10秒前
lyon完成签到,获得积分10
10秒前
1111应助jinyu采纳,获得10
10秒前
qin完成签到,获得积分10
10秒前
Elva完成签到,获得积分10
10秒前
pp‘s发布了新的文献求助10
10秒前
11秒前
11秒前
Amry完成签到,获得积分10
12秒前
12秒前
tom81882发布了新的文献求助50
13秒前
zz完成签到,获得积分20
13秒前
13秒前
13秒前
程老板完成签到,获得积分10
13秒前
14秒前
15秒前
凡fan发布了新的文献求助10
15秒前
搜集达人应助A2QD采纳,获得10
16秒前
16秒前
啦啦啦发布了新的文献求助10
16秒前
大力的代荷完成签到,获得积分10
16秒前
17秒前
qin发布了新的文献求助10
17秒前
hd发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074953
求助须知:如何正确求助?哪些是违规求助? 4294878
关于积分的说明 13382686
捐赠科研通 4116573
什么是DOI,文献DOI怎么找? 2254349
邀请新用户注册赠送积分活动 1258893
关于科研通互助平台的介绍 1191820