Blockchain-Enhanced Federated Learning Market With Social Internet of Things

块链 计算机科学 物联网 互联网 互联网隐私 计算机安全 数据科学 电信 万维网
作者
Pengfei Wang,Yian Zhao,Mohammad S. Obaidat,Zongzheng Wei,Heng Qi,Chi Lin,Yunming Xiao,Qiang Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3405-3421 被引量:18
标识
DOI:10.1109/jsac.2022.3213314
摘要

The machine learning performance usually could be improved by training with massive data. However, requesters can only select a subset of devices with limited training data to execute federated learning (FL) tasks as a result of their limited budgets in today's IoT scenario. To resolve this pressing issue, we devise a blockchain-enhanced FL market (BFL) to $(i)$ make data in computationally bounded devices available for training with social Internet of things, $(ii)$ maximize the amount of training data with given budgets for an FL task, and $(iii)$ decentralize the FL market with blockchain. To achieve these goals, we firstly propose a trust-enhanced collaborative learning strategy (TCL) and a quality-oriented task allocation algorithm (QTA), where TCL enables training data sharing among trusted devices with social Internet of things, and QTA allocates suitable devices to execute FL tasks while maximizing the training quality with fixed budgets. Then, we devise an encrypted model training scheme (EMT) based on a simple but countervailable differential privacy methodology to prevent attacks from malicious devices. In addition, we also propose a contribution-driven delegated proof of stake (DPoS) consensus mechanism to guarantee the fairness of reward distribution in the block generation process. Finally, extensive evaluations are conducted to verify the proposed BFL could improve the total utility of requesters and average accuracy of FL models significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助san采纳,获得10
1秒前
ayitime完成签到,获得积分10
2秒前
十七完成签到 ,获得积分10
6秒前
6秒前
小白加油完成签到,获得积分20
8秒前
10秒前
慕青应助Robigo采纳,获得10
11秒前
CaoRouLi完成签到,获得积分10
12秒前
黄姗姗完成签到 ,获得积分20
13秒前
15秒前
wzx完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
亵渎完成签到,获得积分10
18秒前
18秒前
爆米花应助LCct采纳,获得10
19秒前
慎ming完成签到,获得积分10
19秒前
20秒前
玻璃杯发布了新的文献求助30
20秒前
san发布了新的文献求助10
22秒前
无水乙醚发布了新的文献求助10
22秒前
8y24dp发布了新的文献求助10
23秒前
冷静傲丝完成签到 ,获得积分10
23秒前
听风暖完成签到 ,获得积分10
23秒前
CC完成签到 ,获得积分10
24秒前
隐形曼青应助8y24dp采纳,获得10
28秒前
29秒前
io完成签到,获得积分10
29秒前
嘉博学长发布了新的文献求助20
30秒前
传奇3应助玻璃杯采纳,获得10
30秒前
30秒前
进击的王大宝完成签到,获得积分10
31秒前
31秒前
31秒前
123jjc发布了新的文献求助30
31秒前
LCct发布了新的文献求助10
34秒前
34秒前
34秒前
fancy发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292356
求助须知:如何正确求助?哪些是违规求助? 2928650
关于积分的说明 8438119
捐赠科研通 2600747
什么是DOI,文献DOI怎么找? 1419262
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921