A CT Radiomics Analysis of the Adrenal Masses: Can We Discriminate Lipid-poor Adenomas from the Pheochromocytoma and Malignant Masses?

医学 逻辑回归 放射科 恶性肿瘤 核医学 病理 内科学
作者
Bökebatur Ahmet Raşit Mendi,Mutlu Gülbay
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (9) 被引量:4
标识
DOI:10.2174/1573405619666221115124352
摘要

Aims: The aim of the study is to demonstrate a non-invasive alternative method to aid the decision making process in the management of adrenal masses. Background: Lipid-poor adenomas constitute 30% of all adrenal adenomas. When discovered incidentally, additional dynamic adrenal examinations are required to differentiate them from an adrenal malignancy or pheochromocytoma. Objective: In this retrospective study, we aimed to discriminate lipid-poor adenomas from other lipidpoor adrenal masses by using radiomics analysis in single contrast phase CT scans. Materials and Methods: A total of 38 histologically proven lipid-poor adenomas (Group 1) and 38 cases of pheochromocytoma or malignant adrenal mass (Group 2) were included in this retrospective study. Lesions were segmented volumetrically by two independent authors, and a total of 63 sizes, shapes, and first- and second-order parameters were calculated. Among these parameters, a logit-fit model was produced by using 6 parameters selected by the LASSO (least absolute shrinkage and selection operator) regression. The model was cross-validated with LOOCV (leave-one-out crossvalidation) and 1000-bootstrap sampling. A random forest model was also generated in order to use all parameters without the risk of multicollinearity. This model was examined with the nested crossvalidation method. Results: Sensitivity, specificity, accuracy and AUC were calculated in test sets as 84.2%, 81.6%, 82.9% and 0.829 in the logit fit model and 91%, 80%, 82.8% and 0.975 in the RF model, respectively. Conclusion: Predictive models based on radiomics analysis using single-phase contrast-enhanced CT can help characterize adrenal lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu_jy发布了新的文献求助10
刚刚
典雅涵瑶完成签到,获得积分10
1秒前
善学以致用应助独特寒安采纳,获得10
1秒前
Mircale发布了新的文献求助10
1秒前
WY发布了新的文献求助30
1秒前
2秒前
奈何完成签到,获得积分10
2秒前
勤恳风华完成签到,获得积分10
3秒前
xiaohuihui发布了新的文献求助10
4秒前
bgx完成签到,获得积分20
5秒前
Mircale完成签到,获得积分20
5秒前
大林发布了新的文献求助30
6秒前
退退退上尉完成签到,获得积分10
7秒前
Elsa完成签到,获得积分10
8秒前
夏晴发布了新的文献求助10
11秒前
栗子应助MaYue采纳,获得10
12秒前
Adi完成签到,获得积分10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
14秒前
不配.应助科研通管家采纳,获得10
14秒前
14秒前
Gauss应助科研通管家采纳,获得30
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得20
14秒前
16秒前
莉莉完成签到 ,获得积分10
19秒前
weiquanfei完成签到 ,获得积分10
21秒前
橙子慢慢来完成签到,获得积分10
22秒前
cqy53完成签到 ,获得积分10
23秒前
科研通AI2S应助Sandy采纳,获得10
23秒前
漂亮的魂幽完成签到,获得积分10
24秒前
0109完成签到,获得积分10
24秒前
swmyybh应助夏晴采纳,获得30
26秒前
28秒前
28秒前
30秒前
爱尔兰海鲜面完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620