曲率
碳纳米管
范德瓦尔斯力
热导率
材料科学
热流密度
各向异性
电导
传热
纳米技术
凝聚态物理
机械
物理
复合材料
几何学
光学
量子力学
数学
分子
作者
Mostafa Valadkhani,Shunda Chen,Farshad Kowsary,Giuliano Benenti,Giulio Casati,S. Mehdi Vaez Allaei
标识
DOI:10.1038/s41598-022-22641-y
摘要
Abstract A van der Waals (vdW) heterostructure, can be used in efficient heat management, due to its promising anisotropic thermal transport feature, with high heat conductance in one direction and low conductance in the rest. A carbon nanotube (CNT) bundle, can be used as one of the most feasible vdW heterostructures in a wide range of nanoscale devices. However, detailed investigations of heat transport in CNT bundles are still lacking. In this paper, we study heat transport in different CNT bundles—homogeneous bundles consisting of the one CNT radius (curvature) and inhomogeneous bundles constructed from different CNTs with different curvatures. We also investigate the comparison between two possible thermostatting configurations: the two ends connected (TEC) case in which there is at least a direct covalently connected path between the hot and cold heat baths, and the one end connected (OEC) case in which the system can be divided at least into two parts, by a vdW interacting interface. Nonequilibrium molecular dynamics simulations have been carried out for a wide range of configurations and curvature differences. We find that, in homogeneous bundles, by increasing the number of outer CNTs, the heat conductance increases. In inhomogeneous bundles, the total heat flux shows dependence on the difference between the curvature of the core and outer CNTs. The less the difference between the curvature of the core and the outer CNTs, the more the thermal conductance in the system. By investigating the spectral heat conductance (SHC) in the system, we found that a larger curvature difference between the core and outer CNTs leads to a considerable decrease in the contribution of 0–10 THz phonons in the bundled zone. These results provide an insightful understanding of the heat transport mechanism in vdW nano-heterostructures, more important for designing nanoelectronic devices as well as systems in which asymmetry plays a significant role.
科研通智能强力驱动
Strongly Powered by AbleSci AI