Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems

算法 群体行为 水准点(测量) 优化算法 元启发式 数学优化 元优化 计算机科学 趋同(经济学) 数学 地质学 大地测量学 经济增长 经济
作者
Di Wu,Honghua Rao,Changsheng Wen,Heming Jia,Qingxin Liu,Laith Abualigah
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (22): 4350-4350 被引量:63
标识
DOI:10.3390/math10224350
摘要

The sand cat swarm optimization algorithm (SCSO) is a recently proposed metaheuristic optimization algorithm. It stimulates the hunting behavior of the sand cat, which attacks or searches for prey according to the sound frequency; each sand cat aims to catch better prey. Therefore, the sand cat will search for a better location to catch better prey. In the SCSO algorithm, each sand cat will gradually approach its prey, which makes the algorithm a strong exploitation ability. However, in the later stage of the SCSO algorithm, each sand cat is prone to fall into the local optimum, making it unable to find a better position. In order to improve the mobility of the sand cat and the exploration ability of the algorithm. In this paper, a modified sand cat swarm optimization (MSCSO) algorithm is proposed. The MSCSO algorithm adds a wandering strategy. When attacking or searching for prey, the sand cat will walk to find a better position. The MSCSO algorithm with a wandering strategy enhances the mobility of the sand cat and makes the algorithm have stronger global exploration ability. After that, the lens opposition-based learning strategy is added to enhance the global property of the algorithm so that the algorithm can converge faster. To evaluate the optimization effect of the MSCSO algorithm, we used 23 standard benchmark functions and CEC2014 benchmark functions to evaluate the optimization performance of the MSCSO algorithm. In the experiment, we analyzed the data statistics, convergence curve, Wilcoxon rank sum test, and box graph. Experiments show that the MSCSO algorithm with a walking strategy and a lens position-based learning strategy had a stronger exploration ability. Finally, the MSCSO algorithm was used to test seven engineering problems, which also verified the engineering practicability of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助断愚采纳,获得10
1秒前
1秒前
肥逗完成签到,获得积分10
5秒前
小木完成签到,获得积分10
5秒前
丘比特应助妮妮采纳,获得10
7秒前
可乐完成签到,获得积分10
7秒前
8秒前
无花果应助19554133922采纳,获得10
10秒前
10秒前
lzy完成签到,获得积分20
10秒前
zjw8456发布了新的文献求助10
10秒前
Dearjw1655完成签到,获得积分10
10秒前
10秒前
bkagyin应助华北走地鸡采纳,获得10
11秒前
杨小桐完成签到,获得积分10
12秒前
12秒前
12秒前
zzx完成签到,获得积分10
13秒前
LAIII应助麻辣小牛肉采纳,获得30
13秒前
香蕉觅云应助泉眼采纳,获得10
15秒前
15秒前
风趣过客发布了新的文献求助10
15秒前
淡定尔安发布了新的文献求助10
16秒前
17秒前
aam发布了新的文献求助10
17秒前
19秒前
20秒前
Victor发布了新的文献求助10
22秒前
19554133922发布了新的文献求助10
23秒前
闪闪念波完成签到 ,获得积分10
24秒前
可靠嘉懿完成签到,获得积分10
24秒前
我是老大应助Wang采纳,获得10
24秒前
25秒前
29秒前
30秒前
赤墨完成签到,获得积分10
31秒前
禾页完成签到 ,获得积分10
31秒前
32秒前
Ultraviolet完成签到,获得积分10
33秒前
34秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482558
求助须知:如何正确求助?哪些是违规求助? 3072126
关于积分的说明 9125865
捐赠科研通 2763959
什么是DOI,文献DOI怎么找? 1516742
邀请新用户注册赠送积分活动 701767
科研通“疑难数据库(出版商)”最低求助积分说明 700608