PaleoWood: A machine learning approach for determining the affinity of Paleozoic gymnosperm woods

裸子植物 古生代 亲缘关系 冈瓦纳大陆 古生物学 大型化石 古植物学 木质部 地质学 生物 进化生物学 植物 生物化学 植物发育 构造盆地 基因 全新世
作者
Domingas Maria da Conceição,Mário G.F. Esperança Júnior,Roberto Iannuzzi,Mariana Recamonde‐Mendoza,Guilherme B.B.O. Malta
出处
期刊:Journal of South American Earth Sciences [Elsevier BV]
卷期号:121: 104125-104125 被引量:3
标识
DOI:10.1016/j.jsames.2022.104125
摘要

Fossil plant remains are commonly found in fragments in the sediment, thus complicating the reconstruction and classification of fossil plants into a higher taxonomic group. Particularly for stem anatomy, some described features repeat among the proposed lineages due to environmental pressures that induce anatomical convergence. Other characteristics cannot always be seen because of the fossil's state of preservation, as often happens with the bark and the arrangement of axes and leaves. Given these difficulties, we developed PaleoWood, an unprecedented affinity classifier for Paleozoic gymnosperm woods based on 16 variables collected from 42 consistent genera that have the central core, primary xylem, and secondary xylem described. Similarities among samples were analyzed by principal coordinates, and models were trained through logistic regression, linear discriminant, and k-nearest neighbors algorithms. Models' performance was estimated by cross-validation and testing of the affinity of 20 previously known samples. Results agreed with some hypotheses previously discussed in the literature, such as the linkage of Eristophyton, Megaloxylon, and Tetrastichia with Lyginopteridales. Some other predictions were interpreted to be a result of convergent evolution or the models' limitations, especially those predictions relating to the samples of simple protostele or pycnoxylic pteridosperms (but these models are not definitive and may be improved as new data are collected). Therefore, they could assist in future comparisons and discussions about the taxonomy, evolution, and paleobotanical affinities of the basal seed plants, especially for the woods from Gondwana, in which affinities are obscure for several genera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwm不想看文献完成签到 ,获得积分10
1秒前
3秒前
科研通AI5应助研究牲采纳,获得30
3秒前
坚强幼荷完成签到,获得积分10
3秒前
3秒前
For_winter完成签到,获得积分10
4秒前
5秒前
今后应助程翠丝采纳,获得10
6秒前
小小萝卜头完成签到,获得积分10
6秒前
617499818完成签到,获得积分10
8秒前
Neil发布了新的文献求助10
8秒前
科研小狗发布了新的文献求助10
8秒前
9秒前
punctuation发布了新的文献求助10
10秒前
keyanzhazha给keyanzhazha的求助进行了留言
10秒前
在阳光下完成签到 ,获得积分10
11秒前
在水一方应助夏末采纳,获得10
11秒前
SYLH应助morning采纳,获得10
12秒前
12秒前
风趣谷槐完成签到,获得积分10
12秒前
Whim应助会撒娇的惜蕊采纳,获得30
13秒前
科研通AI5应助称心寒松采纳,获得10
14秒前
li完成签到,获得积分10
15秒前
科研通AI5应助三旬采纳,获得10
16秒前
舒适乐儿发布了新的文献求助10
17秒前
平常的玲完成签到,获得积分20
17秒前
科研小秦完成签到,获得积分10
19秒前
19秒前
肉丸完成签到 ,获得积分10
20秒前
Vincy发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
22秒前
arrow13完成签到,获得积分10
23秒前
conghuang发布了新的文献求助10
25秒前
李健的粉丝团团长应助owl采纳,获得10
25秒前
小马甲应助王羊补牢采纳,获得10
25秒前
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427