Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis

判别式 人工智能 计算机科学 特征向量 特征学习 加权 图形 模式识别(心理学) 机器学习 概率潜在语义分析 理论计算机科学 医学 放射科
作者
Zhi Chen,Yongguo Liu,Yun Zhang,Qiaoqin Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:84: 102698-102698 被引量:15
标识
DOI:10.1016/j.media.2022.102698
摘要

Recent studies have shown that multimodal neuroimaging data provide complementary information of the brain and latent space-based methods have achieved promising results in fusing multimodal data for Alzheimer's disease (AD) diagnosis. However, most existing methods treat all features equally and adopt nonorthogonal projections to learn the latent space, which cannot retain enough discriminative information in the latent space. Besides, they usually preserve the relationships among subjects in the latent space based on the similarity graph constructed on original features for performance boosting. However, the noises and redundant features significantly corrupt the graph. To address these limitations, we propose an Orthogonal Latent space learning with Feature weighting and Graph learning (OLFG) model for multimodal AD diagnosis. Specifically, we map multiple modalities into a common latent space by orthogonal constrained projection to capture the discriminative information for AD diagnosis. Then, a feature weighting matrix is utilized to sort the importance of features in AD diagnosis adaptively. Besides, we devise a regularization term with learned graph to preserve the local structure of the data in the latent space and integrate the graph construction into the learning processing for accurately encoding the relationships among samples. Instead of constructing a similarity graph for each modality, we learn a joint graph for multiple modalities to capture the correlations among modalities. Finally, the representations in the latent space are projected into the target space to perform AD diagnosis. An alternating optimization algorithm with proved convergence is developed to solve the optimization objective. Extensive experimental results show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
3秒前
Ayla雁翎完成签到 ,获得积分10
4秒前
优雅的凝阳完成签到 ,获得积分10
4秒前
yangyangyang完成签到,获得积分10
6秒前
自觉的苑博完成签到,获得积分10
6秒前
wzgkeyantong发布了新的文献求助10
7秒前
8秒前
8秒前
小蘑菇应助顺利皮带采纳,获得10
9秒前
阿木木完成签到,获得积分10
9秒前
10秒前
10秒前
朱zhu发布了新的文献求助10
10秒前
深情安青应助萧水白采纳,获得100
10秒前
HEIKU应助自觉的苑博采纳,获得10
11秒前
ohh发布了新的文献求助10
11秒前
11秒前
13秒前
Enso完成签到 ,获得积分20
14秒前
阿木木发布了新的文献求助10
15秒前
kimihee完成签到,获得积分10
20秒前
Lucas应助朱zhu采纳,获得10
21秒前
谦让的萤完成签到 ,获得积分10
21秒前
24秒前
25秒前
快乐星月完成签到,获得积分10
25秒前
争气完成签到 ,获得积分10
26秒前
27秒前
27秒前
Jahen发布了新的文献求助10
28秒前
科研通AI2S应助byyyy采纳,获得10
29秒前
善学以致用应助jjjiiii采纳,获得10
29秒前
有情皆苦发布了新的文献求助10
30秒前
无水乙醚发布了新的文献求助10
30秒前
严惜完成签到,获得积分10
30秒前
dichloro完成签到,获得积分10
31秒前
完美世界应助jie采纳,获得10
31秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620