微塑料
斑马鱼
谷胱甘肽
代谢组
新陈代谢
脂质代谢
化学
生物化学
毒性
氧化应激
生物
代谢物
环境化学
基因
有机化学
酶
作者
Jing Yu,Weiqing Gu,Ling Chen,Bing Wu
标识
DOI:10.1007/s11356-022-23827-7
摘要
Microplastics (MPs) are widespread in aquatic environments. They could induce intestinal toxicity in the fish. However, research on the metabolic toxicity of polystyrene microplastics (PS-MPs) with different particle sizes to the zebrafish intestine is still limited. Here, metabolomics using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was applied to characterize the metabolic disorders in zebrafish intestine after exposure to 500 μg/L PS-MPs with different sizes (100 nm, 5 μm, and 200 μm) for 21 days. Results showed that the 100 nm PS-MPs group increased glutathione content. A total of 35, 165, and 87 metabolites were significantly altered in zebrafish intestines of 100 nm, 5 μm, and 200 μm groups under positive ion mode, respectively. In comparison, 31, 115, and 45 metabolites were changed in the 100 nm, 5 μm, and 200 μm groups under negative ion mode, respectively. Metabolic pathway analysis indicated that carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism were changed in all three groups. The greatest changes were found in the 5 μm group. Moreover, treatment with micro-sized PS-MP groups specifically changed lipid metabolism, which might be related to pathogenic bacteria (Streptococcus and Moraxella). In the 100 nm PS-MP group, S-adenosyl-L-methionine (SAM) was found to be markedly related to the intestinal microbiota. SAM level was significantly increased, which might account for the elevated glutathione content. To sum up, the mechanisms of nano-sized MPs (oxidative stress) and micro-sized MPs (lipid metabolism disorder) were distinct. This study provides novel insight into the toxicity mechanism of MPs in the zebrafish intestine.
科研通智能强力驱动
Strongly Powered by AbleSci AI