已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PPAEDTI: Personalized Propagation Auto-Encoder Model for Predicting Drug-Target Interactions

计算机科学 编码器 人工智能 药品 医学 操作系统 精神科
作者
Yue-Chao Li,Zhu‐Hong You,Chang-Qing Yu,Lei Wang,Leon Wong,Lun Hu,Pengwei Hu,Yuan Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 573-582 被引量:8
标识
DOI:10.1109/jbhi.2022.3217433
摘要

Identifying protein targets for drugs establishes an indispensable knowledge foundation for drug repurposing and drug development. Though expensive and time-consuming, vitro trials are widely employed to discover drug targets, and the existing relevant computational algorithms still cannot satisfy the demand for real application in drug R&D with regards to the prediction accuracy and performance efficiency, which are urgently needed to be improved. To this end, we propose here the PPAEDTI model, which uses the graph personalized propagation technique to predict drug-target interactions from the known interaction network. To evaluate the prediction performance, six benchmark datasets were used for testing with some state-of-the-art methods compared. As a result, using the 5-fold cross-validation, the proposed PPAEDTI model achieves average AUCs>90% on 5 collected datasets. We also manually checked the top-20 prediction list for 2 proteins (hsa:775 and hsa:779) and a kind of drug (D00618), and successfully confirmed 18, 17, and 20 items from the public datasets, respectively. The experimental results indicate that, given known drug-target interactions, the PPAEDTI model can provide accurate predictions for the new ones, which is anticipated to serve as a useful tool for pharmacology research. Using the proposed model that was trained with the collected datasets, we have built a computational platform that is accessible at http://120.77.11.78/PPAEDTI/ and corresponding codes and datasets are also released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lengyan完成签到,获得积分20
3秒前
5秒前
6秒前
xxxjjj发布了新的文献求助10
9秒前
虚心易云发布了新的文献求助10
11秒前
领导范儿应助Odingers采纳,获得10
11秒前
昏睡的安露完成签到,获得积分10
14秒前
艺涵给艺涵的求助进行了留言
16秒前
Archer完成签到 ,获得积分10
22秒前
111完成签到 ,获得积分10
24秒前
翠芸完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
王鑫完成签到,获得积分20
25秒前
Orange应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
梁朝伟应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
27秒前
山楂发布了新的文献求助10
28秒前
28秒前
王鑫发布了新的文献求助10
30秒前
31秒前
渝州人发布了新的文献求助10
32秒前
随大溜发布了新的文献求助10
33秒前
zzz1231123应助左彦采纳,获得50
33秒前
苞大米发布了新的文献求助10
35秒前
妞妞完成签到 ,获得积分10
37秒前
37秒前
美羊羊完成签到 ,获得积分10
39秒前
42秒前
调研昵称发布了新的文献求助30
43秒前
46秒前
46秒前
hfguwn完成签到,获得积分20
47秒前
Libra完成签到,获得积分20
47秒前
万能图书馆应助GK采纳,获得10
47秒前
48秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171318
求助须知:如何正确求助?哪些是违规求助? 2822311
关于积分的说明 7938661
捐赠科研通 2482767
什么是DOI,文献DOI怎么找? 1322786
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627