Use of random forest machine learning algorithm to predict short term outcomes following posterior cervical decompression with instrumented fusion

医学 围手术期 算法 随机森林 逻辑回归 红细胞压积 外科 机器学习 内科学 计算机科学
作者
Andrew Cabrera,Alexander Bouterse,Michael Nelson,Jacob Razzouk,Omar Ramos,David Chung,Wayne Cheng,Olumide Danisa
出处
期刊:Journal of Clinical Neuroscience [Elsevier]
卷期号:107: 167-171 被引量:16
标识
DOI:10.1016/j.jocn.2022.10.029
摘要

Random Forest (RF) is a widely used machine learning algorithm that can be utilized for identification of patient characteristics important for outcome prediction. Posterior cervical decompression with instrumented fusion (PCDF) is a procedure for the management of cervical spondylosis, cervical spinal stenosis, and degenerative disorders that can cause cervical myelopathy or radiculopathy. An RF algorithm was employed to predict and describe length of stay (LOS), readmission, reoperation, transfusion, and infection rates following elective PCDF using The American College of Surgeons National Quality Improvement Program (ACS-NSQIP) database 2008 through 2018. The RF algorithm was tasked with determining the importance of independent clinical variables in predicting our outcomes of interest and importance of each variable based on the reduction in the Gini index. Application of an RF algorithm to the ACS-NSQIP database yielded a highly predictive set of patient characteristics and perioperative events for five outcomes of interest related to elective PCDF. These variables included postoperative infection, increased age, BMI, operative time, and LOS, and decreased preoperative hematocrit and white blood cell count. Risk factors that were predictive for rate of reoperation, readmission, hospital length of stay, transfusion requirement, and post-operative infection were identified with AUC values of 0.781, 0.791, 0.781, 0.902, and 0.724 respectively. Utilization of these findings may assist in risk analysis during the perioperative period and may influence clinical or surgical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
豆豆发布了新的文献求助10
1秒前
zha完成签到,获得积分10
1秒前
2秒前
yyyyyyy发布了新的文献求助10
2秒前
hj发布了新的文献求助10
3秒前
复杂帽子应助思思采纳,获得10
4秒前
cym666666完成签到,获得积分10
4秒前
4秒前
顾高源完成签到,获得积分10
5秒前
SciGPT应助JY采纳,获得10
6秒前
优雅冷菱发布了新的文献求助10
6秒前
naivete发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
跳跃幻儿应助科研通管家采纳,获得20
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
zha发布了新的文献求助30
7秒前
英姑应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Lee应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
认真的紫菜完成签到,获得积分20
8秒前
sasha发布了新的文献求助10
10秒前
行走的sci发布了新的文献求助10
12秒前
情怀应助陶醉觅夏采纳,获得10
12秒前
curtisness应助yyyyyyy采纳,获得10
13秒前
李健应助辞镜采纳,获得10
13秒前
一手抓爆乌云完成签到,获得积分10
17秒前
17秒前
18秒前
繁馥然完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110714
求助须知:如何正确求助?哪些是违规求助? 2760951
关于积分的说明 7663297
捐赠科研通 2415916
什么是DOI,文献DOI怎么找? 1282142
科研通“疑难数据库(出版商)”最低求助积分说明 618920
版权声明 599478