SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助cc采纳,获得10
2秒前
norberta发布了新的文献求助10
3秒前
3秒前
直率的鸿完成签到,获得积分10
4秒前
1234567发布了新的文献求助10
4秒前
梓航蒋完成签到,获得积分10
4秒前
霸气夜绿发布了新的文献求助10
5秒前
7秒前
hhhhh完成签到 ,获得积分10
8秒前
Orange完成签到 ,获得积分10
9秒前
饶丹发布了新的文献求助20
9秒前
9秒前
飞快的盈关注了科研通微信公众号
12秒前
1234567发布了新的文献求助10
12秒前
weiping完成签到,获得积分10
13秒前
彳系禾发布了新的文献求助10
13秒前
Jasper应助两袖清风采纳,获得10
15秒前
zhan发布了新的文献求助10
15秒前
思源应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
深情安青应助酚羟基装醇采纳,获得10
16秒前
山药汤完成签到,获得积分10
17秒前
李爱国应助money采纳,获得10
18秒前
18秒前
bkagyin应助飞兰采纳,获得10
20秒前
26秒前
蓝色天空完成签到,获得积分10
26秒前
27秒前
27秒前
乐观的箭头完成签到,获得积分10
29秒前
SCH_zhu发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891