SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengw420发布了新的文献求助10
1秒前
2秒前
gtx发布了新的文献求助10
2秒前
xingxinghan完成签到 ,获得积分10
2秒前
川川完成签到,获得积分10
3秒前
玥来玥好发布了新的文献求助10
3秒前
3秒前
淡定白萱完成签到,获得积分10
3秒前
CC发布了新的文献求助10
4秒前
Ava应助体贴的乐松采纳,获得10
4秒前
愫问完成签到,获得积分10
5秒前
赖建琛完成签到 ,获得积分10
5秒前
xj完成签到,获得积分10
6秒前
6秒前
loisss完成签到,获得积分20
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
JamesPei应助刘大大采纳,获得10
7秒前
淡定白萱发布了新的文献求助10
8秒前
8秒前
9秒前
winter888完成签到,获得积分10
9秒前
9秒前
巨人肩上完成签到,获得积分10
9秒前
呵呵哒完成签到,获得积分10
10秒前
愤怒的乐松应助健忘症采纳,获得20
10秒前
10秒前
natuki完成签到,获得积分10
10秒前
知行合一发布了新的文献求助10
11秒前
小处男关注了科研通微信公众号
11秒前
李健的小迷弟应助junzilan采纳,获得10
12秒前
12秒前
山石发布了新的文献求助10
12秒前
winter888发布了新的文献求助10
13秒前
沈文远完成签到,获得积分10
13秒前
笑点低千愁完成签到,获得积分20
13秒前
hhh发布了新的文献求助10
14秒前
15秒前
tang完成签到,获得积分10
15秒前
MMMMM发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397