SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chemchen完成签到,获得积分10
刚刚
HZH完成签到,获得积分10
刚刚
圆圆901234发布了新的文献求助30
1秒前
2秒前
花粉过敏完成签到,获得积分10
3秒前
KXQ发布了新的文献求助10
3秒前
科研通AI2S应助敲敲采纳,获得10
3秒前
霜序完成签到,获得积分10
4秒前
水蔓菁完成签到,获得积分10
4秒前
momo完成签到 ,获得积分10
4秒前
4秒前
4秒前
还单身的老虎完成签到,获得积分10
4秒前
Mashiro完成签到,获得积分10
4秒前
无花果应助优雅的听兰采纳,获得10
5秒前
真实的南琴完成签到,获得积分10
6秒前
6秒前
勤奋白昼完成签到,获得积分20
6秒前
CodeCraft应助gan采纳,获得10
7秒前
英俊的铭应助0000采纳,获得10
7秒前
7秒前
xxx发布了新的文献求助10
9秒前
9秒前
yang发布了新的文献求助30
9秒前
李爱国应助KXQ采纳,获得10
9秒前
9秒前
9秒前
雪白的小土豆完成签到,获得积分10
9秒前
tuiiao完成签到 ,获得积分10
10秒前
黄礼韬发布了新的文献求助10
11秒前
李四发布了新的文献求助10
13秒前
qing完成签到,获得积分10
13秒前
14秒前
XY发布了新的文献求助10
15秒前
Zhang完成签到,获得积分20
15秒前
深情安青应助17采纳,获得10
16秒前
17秒前
小满关注了科研通微信公众号
19秒前
拉长的蓝完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049