SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwj28完成签到,获得积分10
1秒前
顺利毕业完成签到 ,获得积分10
1秒前
1秒前
Wang关注了科研通微信公众号
3秒前
6秒前
魁梧的凌瑶完成签到,获得积分10
7秒前
清澈完成签到,获得积分10
7秒前
HEROER发布了新的文献求助10
7秒前
英姑应助顺利的囧采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
wy.he应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
wy.he应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
wy.he应助科研通管家采纳,获得10
11秒前
Ky_Mac应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Ky_Mac应助科研通管家采纳,获得30
11秒前
Twonej应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
chen应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Twonej应助科研通管家采纳,获得30
11秒前
郑浚杳发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861