SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo发布了新的文献求助10
刚刚
Carpe完成签到,获得积分10
2秒前
宁绮兰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
李爱国应助一直很安静采纳,获得10
4秒前
英姑应助远志采纳,获得10
4秒前
舒心初晴完成签到,获得积分10
5秒前
CodeCraft应助犹豫的踏歌采纳,获得10
7秒前
尊敬的寄松完成签到,获得积分10
7秒前
8秒前
kyle发布了新的文献求助40
9秒前
9秒前
endlessloop发布了新的文献求助10
9秒前
善学以致用应助奥利奥采纳,获得50
10秒前
吴雨茜完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
一直很安静完成签到,获得积分10
11秒前
12秒前
科研完成签到,获得积分10
13秒前
zqingqing发布了新的文献求助10
13秒前
GPTea完成签到,获得积分0
13秒前
lbj发布了新的文献求助30
14秒前
14秒前
endlessloop完成签到,获得积分20
15秒前
Yulb发布了新的文献求助10
17秒前
爆米花应助闫素肃采纳,获得10
17秒前
tsuki完成签到 ,获得积分10
18秒前
李俊枫发布了新的文献求助30
18秒前
18秒前
18秒前
xyx发布了新的文献求助10
19秒前
lightman完成签到,获得积分10
19秒前
19秒前
光亮的秋白完成签到 ,获得积分10
20秒前
Dreamable完成签到,获得积分10
20秒前
外向烤鸡完成签到,获得积分10
21秒前
22秒前
22秒前
远志发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779