SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
三硕驳回了勿明应助
刚刚
Lucas应助melody采纳,获得10
刚刚
1秒前
Pan发布了新的文献求助10
2秒前
梦中有琦完成签到,获得积分10
2秒前
yecheng给yecheng的求助进行了留言
2秒前
2秒前
3秒前
Connie完成签到,获得积分10
4秒前
风清扬应助激光炮砰砰砰采纳,获得10
4秒前
风清扬应助激光炮砰砰砰采纳,获得10
4秒前
风清扬应助激光炮砰砰砰采纳,获得10
4秒前
罗中翠发布了新的文献求助20
4秒前
传奇3应助激光炮砰砰砰采纳,获得10
4秒前
风清扬应助激光炮砰砰砰采纳,获得10
4秒前
852应助激光炮砰砰砰采纳,获得10
5秒前
zho应助激光炮砰砰砰采纳,获得10
5秒前
5秒前
顾矜应助激光炮砰砰砰采纳,获得10
5秒前
5秒前
5秒前
xiaowang发布了新的文献求助10
5秒前
傅宛白完成签到,获得积分10
5秒前
5秒前
celinewu完成签到,获得积分10
5秒前
ivy完成签到,获得积分10
6秒前
龙抬头发布了新的文献求助10
6秒前
冫峯完成签到,获得积分10
7秒前
赵子曰发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
8秒前
霖霖发布了新的文献求助10
8秒前
9秒前
张秋雨发布了新的文献求助30
9秒前
欣慰白山应助huangqx采纳,获得10
10秒前
10秒前
结实的幽魂完成签到,获得积分10
10秒前
孤岛完成签到,获得积分20
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158