SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪涫应助Alarack采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
王KKK发布了新的文献求助10
刚刚
含蓄的半完成签到,获得积分10
1秒前
隐形的小刺猬完成签到 ,获得积分10
1秒前
xiaofan完成签到,获得积分20
2秒前
锂离子发布了新的文献求助10
3秒前
王jh完成签到 ,获得积分10
4秒前
ZeKaWa应助Vintoe采纳,获得10
4秒前
fighting发布了新的文献求助10
5秒前
刘岩完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
猪猪hero应助wuxunxun2015采纳,获得10
6秒前
7秒前
GLv完成签到,获得积分10
8秒前
9秒前
嫁接诺贝尔应助自然醒采纳,获得10
9秒前
9秒前
森森发布了新的文献求助10
10秒前
冬天发布了新的文献求助10
10秒前
刘岩发布了新的文献求助10
10秒前
科研的神发布了新的文献求助10
10秒前
华仔应助养乐多敬你采纳,获得10
10秒前
猪猪hero应助养乐多敬你采纳,获得10
10秒前
科研通AI2S应助养乐多敬你采纳,获得10
10秒前
10秒前
11秒前
无花果应助正直的西牛采纳,获得10
12秒前
12秒前
13秒前
13秒前
zsl完成签到,获得积分10
13秒前
hh发布了新的文献求助10
13秒前
啵啵完成签到,获得积分20
13秒前
瘦瘦发布了新的文献求助10
13秒前
13秒前
酷波er应助Carl采纳,获得10
14秒前
付研琪发布了新的文献求助10
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592