已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SolarRadnet: A novel variant input scoring optimized recurrent neural network for solar irradiance prediction

太阳辐照度 光伏系统 计算机科学 辐照度 人工神经网络 可再生能源 一般化 卷积神经网络 人工智能 数据挖掘 模拟 气象学 工程类 数学 地理 数学分析 物理 电气工程 量子力学
作者
Alameen Eltoum Mohamed Abdalrahman,Danish Ahamad,Mobin Akhtar,Karim Gasmi
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (4): 10156-10180
标识
DOI:10.1080/15567036.2022.2143947
摘要

Solar irradiance prediction is an essential one in providing renewable energy proficiently. The solar irradiance plays a major role in solar power system, solar thermal system, and photovoltaic grid-connected system, owing to uncertainty and variability. Conventional data analysis approaches are complex for demonstrating superior generalization. Therefore, the resource planners are flexible in accommodating these uncertainties while executing planning. To enhance the performance of solar irradiance forecasting, a new Variant Input Scoring Optimized Recurrent Neural Network (VIS-ORNN) is developed. The suggested approach includes two stages that are data collection and three stage simulation. At first, the data are gathered from the various meteorological standard dataset. Then, the prediction begins with feeding data directly to the ORNN. Here, the parameters of RNN are optimized with the help of Adaptive Escaping Energy-based Harris Hawks Coyote Optimization (AEE-HHCO) algorithm. Thus, the first score prediction is obtained. In the second phase, the first order statistical features act as an input, and it is given to the same ORNN, in which the second score is determined. In the third phase, the deep features are extracted by Convolutional Neural Network (CNN) that is subjected to the same ORNN for attaining the score. Finally, the final simulation is determined by taking the average of three prediction models. From the experimental results, while taking the MAE, the suggested AEE-HHCO-ORNN method has correspondingly secured 34.3% enhanced than PSO-ORNN, 7.7% enhanced than WOA-ORNN, 21.7% enhanced than COA-ORNN and 26.5% enhanced than HHO-ORNN. Thus, the simulation outcomes reveal that the offered method ensures maximum accuracy while validating with other baseline methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖落完成签到,获得积分10
1秒前
心理学四完成签到,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
羽羽完成签到 ,获得积分10
5秒前
唐阳发布了新的文献求助10
5秒前
5秒前
小二郎应助harry采纳,获得10
6秒前
积雪完成签到 ,获得积分10
10秒前
16秒前
16秒前
Orange应助爱笑子默采纳,获得10
17秒前
头上有犄角bb完成签到 ,获得积分10
17秒前
18秒前
寺9完成签到 ,获得积分10
18秒前
sue发布了新的文献求助10
19秒前
隐形曼青应助优美凡白采纳,获得10
20秒前
科研宝宝发布了新的文献求助10
21秒前
hnx1005完成签到 ,获得积分10
22秒前
22秒前
23秒前
余红发布了新的文献求助10
24秒前
29秒前
搜集达人应助文献采纳,获得10
30秒前
FashionBoy应助水若琳采纳,获得10
31秒前
桐桐应助琪凯定理采纳,获得10
32秒前
蓝风铃完成签到 ,获得积分10
32秒前
爆米花应助太就采纳,获得10
36秒前
36秒前
娇气的冬菱完成签到,获得积分10
37秒前
38秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
默默的甜瓜完成签到,获得积分10
39秒前
草莓味的菠萝糕完成签到 ,获得积分10
40秒前
咖褐完成签到 ,获得积分10
40秒前
义气发布了新的文献求助10
40秒前
刘启迪发布了新的文献求助10
42秒前
文献发布了新的文献求助10
42秒前
乐观的小埋完成签到 ,获得积分10
44秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740