Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions

计算机科学 需求预测 启发式 推论 机器学习 产品(数学) 人工智能 运筹学 几何学 数学 操作系统 工程类
作者
Zhenyu Chen,Zhi‐Ping Fan,Minghe Sun
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 158-177 被引量:6
标识
DOI:10.1287/ijoc.2022.1251
摘要

This study develops machine learning methods for the data-driven demand estimation and assortment planning problem by addressing three subproblems, that is, demand forecasting simultaneously considering cross-selling and substitutions, estimation of the cross-selling and substitution effects, and assortment optimization. These three subproblems are transformed into three sequentially related machine learning problems: collective demand forecasting, demand inference for cross-selling and substitutions, and assortment rule mining. For collective demand forecasting, related product features are introduced to consider both the cross-selling and substitution effects, and a collaborative coordinate descent method with a good convergence property is developed to make distributed demand forecasting and a global update of related product features. Using the results, demand inference adopts transfer and semisupervised learning methods to tackle the challenge of missing data in quantifying the cross-selling and substitution effects. For assortment rule mining, the assortment rules bridge the gap between prediction and optimization, and the developed heuristics obtain the best assortment using the prior knowledge discovered in demand inference. The computational results on a real-world database and a semisynthetic database show that collective demand forecasting obtained far better results than the standard demand forecasting methods and some popular graph learning methods, and the developed heuristics identified much better assortments than those obtained with the baseline methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the construction base project of discipline innovation and talent introduction plan of Chinese higher educational institutions (111 project) [Grant B16009] and the National Natural Science Foundation of China [Grant 72031002]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2022.1251 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妳咔咔发布了新的文献求助10
刚刚
2秒前
赘婿应助hhh采纳,获得30
2秒前
kong应助端庄新烟采纳,获得10
2秒前
小浣熊发布了新的文献求助10
2秒前
3秒前
坦率的万言完成签到,获得积分10
3秒前
mofan发布了新的文献求助10
4秒前
zhuang完成签到,获得积分10
4秒前
4秒前
lqkcqmu发布了新的文献求助10
4秒前
RyanNeo完成签到,获得积分10
4秒前
大林子发布了新的文献求助10
4秒前
歆琉发布了新的文献求助10
4秒前
asdfghjkl完成签到,获得积分10
5秒前
晨曦完成签到,获得积分10
5秒前
6秒前
了111发布了新的文献求助10
7秒前
Surge完成签到,获得积分10
7秒前
7秒前
sasa完成签到 ,获得积分10
7秒前
蔡军发布了新的文献求助10
8秒前
8秒前
华仔应助阿九采纳,获得10
8秒前
拍不醒的薄荷完成签到,获得积分10
9秒前
9秒前
O已w时o完成签到,获得积分10
10秒前
陶醉小笼包完成签到,获得积分10
10秒前
筱诸雄完成签到,获得积分10
10秒前
huaming发布了新的文献求助20
10秒前
科研小虫发布了新的文献求助10
10秒前
June完成签到,获得积分10
11秒前
12秒前
眼睛大雨筠应助饼饼采纳,获得30
12秒前
12秒前
12秒前
hhh完成签到,获得积分10
12秒前
13秒前
脑洞疼应助歆琉采纳,获得10
13秒前
敏宝发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039