Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions

计算机科学 需求预测 启发式 推论 机器学习 产品(数学) 人工智能 运筹学 几何学 数学 操作系统 工程类
作者
Zhenyu Chen,Zhi‐Ping Fan,Minghe Sun
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 158-177 被引量:6
标识
DOI:10.1287/ijoc.2022.1251
摘要

This study develops machine learning methods for the data-driven demand estimation and assortment planning problem by addressing three subproblems, that is, demand forecasting simultaneously considering cross-selling and substitutions, estimation of the cross-selling and substitution effects, and assortment optimization. These three subproblems are transformed into three sequentially related machine learning problems: collective demand forecasting, demand inference for cross-selling and substitutions, and assortment rule mining. For collective demand forecasting, related product features are introduced to consider both the cross-selling and substitution effects, and a collaborative coordinate descent method with a good convergence property is developed to make distributed demand forecasting and a global update of related product features. Using the results, demand inference adopts transfer and semisupervised learning methods to tackle the challenge of missing data in quantifying the cross-selling and substitution effects. For assortment rule mining, the assortment rules bridge the gap between prediction and optimization, and the developed heuristics obtain the best assortment using the prior knowledge discovered in demand inference. The computational results on a real-world database and a semisynthetic database show that collective demand forecasting obtained far better results than the standard demand forecasting methods and some popular graph learning methods, and the developed heuristics identified much better assortments than those obtained with the baseline methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the construction base project of discipline innovation and talent introduction plan of Chinese higher educational institutions (111 project) [Grant B16009] and the National Natural Science Foundation of China [Grant 72031002]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2022.1251 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莓烦恼完成签到 ,获得积分10
刚刚
1秒前
白江虎完成签到,获得积分10
2秒前
3秒前
阳光的凌雪完成签到 ,获得积分10
4秒前
文艺小馒头完成签到,获得积分10
4秒前
赵赵发布了新的文献求助20
5秒前
橙子发布了新的文献求助10
7秒前
8秒前
Wsyyy完成签到 ,获得积分10
10秒前
10秒前
ganjqly完成签到,获得积分10
10秒前
董惠玲66发布了新的文献求助10
11秒前
g7001完成签到,获得积分10
13秒前
blue发布了新的文献求助10
13秒前
刘铭晨完成签到,获得积分10
13秒前
XYZ完成签到 ,获得积分10
14秒前
wmszhd完成签到,获得积分10
14秒前
付艳完成签到,获得积分10
14秒前
CAOHOU应助论文顺利采纳,获得10
15秒前
nancy93228完成签到 ,获得积分10
16秒前
搜集达人应助JW采纳,获得10
18秒前
???完成签到,获得积分10
20秒前
优秀的白曼完成签到,获得积分10
22秒前
王小西发布了新的文献求助10
23秒前
碧蓝莫言完成签到 ,获得积分10
25秒前
清璃完成签到 ,获得积分10
26秒前
虚心的寒梦完成签到,获得积分10
26秒前
秋秋发布了新的文献求助10
26秒前
kkk完成签到,获得积分10
28秒前
bnhh完成签到,获得积分10
28秒前
Betty应助lindahuang采纳,获得10
29秒前
ilk666完成签到,获得积分10
30秒前
小王同学发布了新的文献求助10
30秒前
奶油布丁完成签到,获得积分10
33秒前
酶没美镁完成签到,获得积分10
33秒前
天天快乐应助李治海采纳,获得10
34秒前
星辰大海应助lll采纳,获得10
34秒前
龙1完成签到,获得积分10
34秒前
yzhilson完成签到 ,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029