Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions

计算机科学 需求预测 启发式 推论 机器学习 产品(数学) 人工智能 运筹学 几何学 数学 操作系统 工程类
作者
Zhenyu Chen,Zhi‐Ping Fan,Minghe Sun
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 158-177 被引量:6
标识
DOI:10.1287/ijoc.2022.1251
摘要

This study develops machine learning methods for the data-driven demand estimation and assortment planning problem by addressing three subproblems, that is, demand forecasting simultaneously considering cross-selling and substitutions, estimation of the cross-selling and substitution effects, and assortment optimization. These three subproblems are transformed into three sequentially related machine learning problems: collective demand forecasting, demand inference for cross-selling and substitutions, and assortment rule mining. For collective demand forecasting, related product features are introduced to consider both the cross-selling and substitution effects, and a collaborative coordinate descent method with a good convergence property is developed to make distributed demand forecasting and a global update of related product features. Using the results, demand inference adopts transfer and semisupervised learning methods to tackle the challenge of missing data in quantifying the cross-selling and substitution effects. For assortment rule mining, the assortment rules bridge the gap between prediction and optimization, and the developed heuristics obtain the best assortment using the prior knowledge discovered in demand inference. The computational results on a real-world database and a semisynthetic database show that collective demand forecasting obtained far better results than the standard demand forecasting methods and some popular graph learning methods, and the developed heuristics identified much better assortments than those obtained with the baseline methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the construction base project of discipline innovation and talent introduction plan of Chinese higher educational institutions (111 project) [Grant B16009] and the National Natural Science Foundation of China [Grant 72031002]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2022.1251 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
俞渝完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助菠萝采纳,获得10
4秒前
5秒前
小周不吃粥完成签到 ,获得积分10
6秒前
科研通AI2S应助wangzhao采纳,获得10
6秒前
钦川发布了新的文献求助10
6秒前
6秒前
zengyl完成签到,获得积分10
7秒前
脑洞疼应助喜东东采纳,获得30
8秒前
耶耶完成签到 ,获得积分20
8秒前
9秒前
11秒前
山山而川发布了新的文献求助20
11秒前
11秒前
12秒前
JACN完成签到,获得积分10
13秒前
钦川完成签到,获得积分10
13秒前
李爱国应助清酒采纳,获得10
14秒前
Hello应助阿尧采纳,获得10
14秒前
赘婿应助普鲁卡因采纳,获得10
14秒前
14秒前
牛诗悦发布了新的文献求助10
15秒前
小橘子会发光完成签到 ,获得积分10
15秒前
JACN发布了新的文献求助10
18秒前
完美世界应助erhan7采纳,获得10
18秒前
科研通AI2S应助刘若鑫采纳,获得10
19秒前
20秒前
饱满的山菡完成签到,获得积分20
20秒前
wangzhao发布了新的文献求助10
21秒前
zho关闭了zho文献求助
22秒前
景熙完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
Andy完成签到 ,获得积分10
24秒前
普鲁卡因完成签到,获得积分20
25秒前
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226