效应器
寄主(生物学)
微生物学
生物
细胞生物学
生态学
作者
Xinyue Shu,Desuo Yin,Juan Boo Liang,Deze Xu,Yuqi Jiang,Ting Xiang,Yuxuan Wang,Chunhai Jiao,Ping Li,Aiping Zheng,Aijun Wang
标识
DOI:10.3390/ijms232314752
摘要
The basidiomycete fungus Tilletia horrida causes rice kernel smut (RKS), a crucial disease afflicting hybrid-rice-growing areas worldwide, which results in significant economic losses. However, few studies have investigated the pathogenic mechanisms and functions of effectors in T. horrida. In this study, we found that the candidate effector ThSCSP_12 caused cell necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide (SP) of this protein has a secreting function, which is required for ThSCSP_12 to induce cell death. The 1- 189 amino acid (aa) sequences of ThSCSP_12 are sufficient to confer it the ability to trigger cell death in N. benthamiana. The expression of ThSCSP_12 was induced and up-regulated during T. horrida infection. In addition, we also found that ThSCSP_12 localized in both the cytoplasm and nucleus of plant cells and that nuclear localization of this protein is required to induce cell death. Furthermore, the ability of ThSCSP_12 to trigger cell death in N. benthamiana depends on the (RAR1) protein required for Mla12 resistance but not on the suppressor of the G2 allele of Skp1 (SGT1), heat shock protein 90 (HSP90), or somatic embryogenesis receptor-like kinase (SERK3). Crucially, however, ThSCSP_12 induced a defense response in N. benthamiana leaves; yet, the expression of multiple defense-related genes was suppressed in response to heterologous expression in host plants. To sum up, these results strongly suggest that ThSCSP_12 operates as an effector in T. horrida–host interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI