Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters

能源消耗 能源会计 计算机科学 工业工程 工程类 模拟 人工智能 电气工程
作者
Sean Kapp,Jun‐Ki Choi,Taehoon Hong
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:172: 113045-113045 被引量:60
标识
DOI:10.1016/j.rser.2022.113045
摘要

The industrial sector consumes about one-third of global energy, making them a frequent target for energy use reduction. Variation in energy usage is observed with weather conditions, as space conditioning needs to change seasonally, and with production, energy-using equipment is directly tied to production rate. Previous models were based on engineering analyses of equipment and relied on site-specific details. Others consisted of single-variable regressors that did not capture all contributions to energy consumption. New modeling techniques could be applied to rectify these weaknesses. Applying data from 45 different manufacturing plants obtained from industrial energy audits, a supervised machine-learning model is developed to create a general predictor for industrial building energy consumption. The model uses features of air enthalpy, solar radiation, and wind speed to predict weather-dependency; motor, steam, and compressed air system parameters to capture support equipment contributions; and operating schedule, production rate, number of employees, and floor area to determine production-dependency. Results showed that a model that used a linear regressor over a transformed feature space could outperform a support vector machine and utilize features more representative of physical systems. Using informed parameters to build a reliable predictor will more accurately characterize a manufacturing facility's energy savings opportunities. • Industrial energy data from 45 manufacturing facilities are obtained from on-site energy audits. • A supervised ML model is developed to facilitate predicting industrial energy consumption. • Basis function model presented a grounding in the physical nature of industrial energy systems. • Enables energy engineers or plant personnel to construct a more descriptive energy model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浣熊小呆完成签到,获得积分10
刚刚
12345678发布了新的文献求助10
刚刚
乐乐应助淡淡菠萝采纳,获得10
刚刚
科研小白完成签到,获得积分10
1秒前
丛玉林完成签到,获得积分10
1秒前
纯真的梦竹完成签到,获得积分10
1秒前
xiaocui发布了新的文献求助10
2秒前
2秒前
2秒前
LLxiaolong完成签到,获得积分10
2秒前
3秒前
3秒前
傻呼呼发布了新的文献求助10
3秒前
泡泡球完成签到,获得积分10
3秒前
大意的雪晴完成签到,获得积分20
3秒前
复杂真完成签到,获得积分10
3秒前
NORMCORE完成签到,获得积分10
4秒前
4秒前
hhhhhha完成签到,获得积分10
4秒前
小景毕业发布了新的文献求助10
4秒前
李正安应助琪琪采纳,获得10
4秒前
wu完成签到,获得积分10
4秒前
体贴不悔完成签到,获得积分10
5秒前
情怀应助cy采纳,获得10
5秒前
5秒前
6秒前
姜且发布了新的文献求助10
6秒前
zhuding1978完成签到,获得积分10
6秒前
7秒前
搞怪妙菱发布了新的文献求助10
8秒前
小伙伴发布了新的文献求助10
8秒前
乐乐应助香辣鸡腿堡采纳,获得10
8秒前
单于青荷发布了新的文献求助10
8秒前
8秒前
ZZWSWJ完成签到,获得积分10
8秒前
8秒前
sisisij发布了新的文献求助10
8秒前
科研通AI2S应助科科可乐采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3435090
求助须知:如何正确求助?哪些是违规求助? 3032492
关于积分的说明 8946327
捐赠科研通 2720470
什么是DOI,文献DOI怎么找? 1492236
科研通“疑难数据库(出版商)”最低求助积分说明 689767
邀请新用户注册赠送积分活动 685926