双金属片
电催化剂
氧还原反应
对偶(语法数字)
氧还原
材料科学
氧气
化学工程
化学
无机化学
催化作用
电极
电化学
有机化学
物理化学
文学类
艺术
工程类
作者
Zechen Wang,Xiaotong Hou,Sander Dekyvere,Bibimaryam Mousavi,Somboon Chaemchuen
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (44): 16683-16694
被引量:6
摘要
A straightforward in situ thermal (IST) method is developed to synthesize bimetallic Co/Zn embedded in nitrogen-doped three-dimensional carbon (CoZn@NC_IST). The facile IST process is a single-step thermal treatment of a mixture of metals (Co/Zn) and 2-methylimidazole precursors under solvent-free conditions. This straightforward method is advantageous over the traditional synthesis derived from CoZn-ZIF (CoZn@NC_Solv). During the IST method, the bimetallic Co/Zn bridged with 2-methylimidazole forming zeolitic-imidazole frameworks (ZIFs) under low-temperature (<200 °C) conditions before being de-coordinated and sacrificed their structure into a carbon material at high temperature (>500 °C). Loading zinc into the mixture of precursors contributed to the metal distribution and increased the surface area compared with the sample without zinc (Co@NC_IST). CoZn@NC_IST exhibits a bifunctional electrocatalytic ability for the ORR (0.855 V@E1/2) and OER (overpotential of 325 mV@10 mA cm-2). Applying CoZn@NC_IST in a zinc-air battery confirmed its excellent and effective dual-function electrocatalytic performance. Herein, using the advanced single-step method of IST in the absence of any solvent, we provide a powerful and green synthesis of an electrocatalyst that is a potential candidate for industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI