守恒定律
一般化
独立性(概率论)
非线性系统
微分方程
人工神经网络
应用数学
计算机科学
数学
数学分析
法学
物理
人工智能
量子力学
政治学
统计
作者
Ziming Liu,Varun Madhavan,Max Tegmark
出处
期刊:Physical review
日期:2022-10-21
卷期号:106 (4)
被引量:17
标识
DOI:10.1103/physreve.106.045307
摘要
We present a machine learning algorithm that discovers conservation laws from differential equations, both numerically (parametrized as neural networks) and symbolically, ensuring their functional independence (a nonlinear generalization of linear independence). Our independence module can be viewed as a nonlinear generalization of singular value decomposition. Our method can readily handle inductive biases for conservation laws. We validate it with examples including the three-body problem, the KdV equation, and nonlinear Schr\"odinger equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI