Radiomics combined with clinical features in distinguishing non-calcifying tuberculosis granuloma and lung adenocarcinoma in small pulmonary nodules

医学 接收机工作特性 无线电技术 放射科 活检 内科学
作者
Qing Dong,Qingqing Wen,Nan Li,Jinlong Tong,Zhaofu Li,Xin Bao,Jinzhi Xu,Dandan Li
出处
期刊:PeerJ [PeerJ]
卷期号:10: e14127-e14127
标识
DOI:10.7717/peerj.14127
摘要

Aim To evaluate the performance of radiomics models with the combination of clinical features in distinguishing non-calcified tuberculosis granuloma (TBG) and lung adenocarcinoma (LAC) in small pulmonary nodules. Methodology We conducted a retrospective analysis of 280 patients with pulmonary nodules confirmed by surgical biopsy from January 2017 to December 2020. Samples were divided into LAC group ( n = 143) and TBG group ( n = 137). We assigned them to a training dataset ( n = 196) and a testing dataset ( n = 84). Clinical features including gender, age, smoking, CT appearance (size, location, spiculated sign, lobulated shape, vessel convergence, and pleural indentation) were extracted and included in the radiomics models. 3D slicer and FAE software were used to delineate the Region of Interest (ROI) and extract clinical features. The performance of the model was evaluated by the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). Results Based on the model selection, clinical features gender, and age in the LAC group and TBG group showed a significant difference in both datasets ( P < 0.05). CT appearance lobulated shape was also significantly different in the LAC group and TBG group (Training dataset, P = 0.034; Testing dataset, P = 0.030). AUC were 0.8344 (95% CI [0.7712–0.8872]) and 0.751 (95% CI [0.6382–0.8531]) in training and testing dataset, respectively. Conclusion With the capacity to detect differences between TBG and LAC based on their clinical features, radiomics models with a combined of clinical features may function as the potential non-invasive tool for distinguishing TBG and LAC in small pulmonary nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hn发布了新的文献求助20
刚刚
zhou发布了新的文献求助10
刚刚
lyejxusgh完成签到,获得积分10
1秒前
赖道之发布了新的文献求助10
1秒前
张鱼小丸子完成签到,获得积分10
1秒前
无花果应助下课了吧采纳,获得10
1秒前
加肥猫1992完成签到,获得积分10
1秒前
zhogwe完成签到,获得积分10
2秒前
Zachary完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
坦率的无春完成签到 ,获得积分10
3秒前
3秒前
胤宸发布了新的文献求助10
3秒前
4秒前
ZY发布了新的文献求助20
4秒前
Wu完成签到,获得积分10
5秒前
5秒前
5秒前
烟花不能太放肆完成签到,获得积分20
5秒前
183完成签到,获得积分10
6秒前
6秒前
123lura发布了新的文献求助10
6秒前
宫立辉完成签到,获得积分10
6秒前
curtainai完成签到,获得积分10
7秒前
91完成签到,获得积分10
7秒前
无情的冰香完成签到 ,获得积分10
7秒前
xh完成签到,获得积分20
7秒前
迟大猫应助周舟采纳,获得10
7秒前
7秒前
8秒前
8秒前
SLS完成签到,获得积分10
9秒前
9秒前
9秒前
swsx1317发布了新的文献求助10
10秒前
11秒前
kilig应助hohokuz采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762