Radiomics combined with clinical features in distinguishing non-calcifying tuberculosis granuloma and lung adenocarcinoma in small pulmonary nodules

医学 接收机工作特性 无线电技术 放射科 活检 内科学
作者
Qing Dong,Qingqing Wen,Nan Li,Jinlong Tong,Zhaofu Li,Xin Bao,Jinzhi Xu,Dandan Li
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e14127-e14127
标识
DOI:10.7717/peerj.14127
摘要

Aim To evaluate the performance of radiomics models with the combination of clinical features in distinguishing non-calcified tuberculosis granuloma (TBG) and lung adenocarcinoma (LAC) in small pulmonary nodules. Methodology We conducted a retrospective analysis of 280 patients with pulmonary nodules confirmed by surgical biopsy from January 2017 to December 2020. Samples were divided into LAC group ( n = 143) and TBG group ( n = 137). We assigned them to a training dataset ( n = 196) and a testing dataset ( n = 84). Clinical features including gender, age, smoking, CT appearance (size, location, spiculated sign, lobulated shape, vessel convergence, and pleural indentation) were extracted and included in the radiomics models. 3D slicer and FAE software were used to delineate the Region of Interest (ROI) and extract clinical features. The performance of the model was evaluated by the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). Results Based on the model selection, clinical features gender, and age in the LAC group and TBG group showed a significant difference in both datasets ( P < 0.05). CT appearance lobulated shape was also significantly different in the LAC group and TBG group (Training dataset, P = 0.034; Testing dataset, P = 0.030). AUC were 0.8344 (95% CI [0.7712–0.8872]) and 0.751 (95% CI [0.6382–0.8531]) in training and testing dataset, respectively. Conclusion With the capacity to detect differences between TBG and LAC based on their clinical features, radiomics models with a combined of clinical features may function as the potential non-invasive tool for distinguishing TBG and LAC in small pulmonary nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助marinzou采纳,获得10
1秒前
3242晶发布了新的文献求助10
1秒前
情殇发布了新的文献求助10
2秒前
海海发布了新的文献求助10
2秒前
3秒前
归尘发布了新的文献求助10
3秒前
月青悠完成签到,获得积分10
4秒前
新嘟发布了新的文献求助10
4秒前
852应助iMoney采纳,获得10
4秒前
小马甲应助糕米采纳,获得10
5秒前
EasyE完成签到,获得积分10
6秒前
高兴的灰狼完成签到,获得积分10
6秒前
小苗儿完成签到,获得积分10
6秒前
扬xue完成签到,获得积分10
8秒前
8秒前
打打应助一天三个蛋采纳,获得10
8秒前
李春鸿关注了科研通微信公众号
9秒前
9秒前
Zl完成签到,获得积分10
10秒前
谦让的西装完成签到 ,获得积分10
10秒前
waoller1发布了新的文献求助10
10秒前
wen完成签到,获得积分10
12秒前
Komorebi完成签到 ,获得积分10
12秒前
合适台灯发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助YING采纳,获得10
13秒前
13秒前
共享精神应助Blues汪采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
15秒前
15秒前
WJ1989发布了新的文献求助10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
乾龙完成签到,获得积分10
16秒前
打打应助科研通管家采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344