Distributional robustness and lateral transshipment for disaster relief logistics planning under demand ambiguity

模棱两可 CVAR公司 稳健优化 稳健性(进化) 数学优化 运筹学 计算机科学 业务 随机规划 线性规划 风险管理 预期短缺 数学 基因 程序设计语言 化学 生物化学 财务
作者
Duo Wang,Kai Yang,Lixing Yang,Shukai Li
出处
期刊:International Transactions in Operational Research [Wiley]
卷期号:31 (3): 1736-1761 被引量:11
标识
DOI:10.1111/itor.13227
摘要

Abstract This paper considers facility location, inventory pre‐positioning and vehicle routing as strategic and operational decisions corresponding to preparedness and response phases in disaster relief logistics planning. For balancing surpluses and shortages, an effective lateral transshipment strategy is proposed to evenly distribute the relief resources between warehouses after the disaster occurs. To handle ambiguity in the probability distribution of demand, we develop a risk‐averse two‐stage distributionally robust optimization (DRO) model for the disaster relief logistics planning problem, which specifies the worst‐case mean‐conditional value‐at‐risk (CVaR) as a risk measure. For computationally tractability, we transform the robust counterpart into its equivalent linear mixed‐integer programming model under the discrepancy‐based ambiguity set centered at the nominal (empirical) distributions on the observed demand from the historical data. We verify the effectiveness of the proposed DRO model and the value of lateral transshipment strategy by an illustrative small‐scale example. The numerical results show that the proposed DRO model has advantage on avoiding over‐conservative solutions compared to the classic robust optimization model. We also illustrate the applicability of the proposed DRO model by a real‐world case study of hurricanes in the southeastern United States. The computational results demonstrate that the proposed DRO model has superior out‐of‐sample performance and can mitigate the adverse effects of Optimizers' Curse compared with the traditional stochastic programming model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tree发布了新的文献求助10
1秒前
阿耒发布了新的文献求助10
1秒前
充电宝应助着急的听南采纳,获得10
1秒前
蔡新蕊发布了新的文献求助10
2秒前
是小王ya完成签到,获得积分10
3秒前
3秒前
3秒前
wwnd完成签到,获得积分10
3秒前
开朗广山发布了新的文献求助10
4秒前
Orange应助elisa828采纳,获得10
4秒前
5秒前
打打应助smiles采纳,获得10
5秒前
柳叶刀小猪应助小Q啊啾采纳,获得30
5秒前
5秒前
四件发布了新的文献求助10
6秒前
7秒前
Hans完成签到 ,获得积分10
7秒前
8秒前
淡淡的姝发布了新的文献求助30
8秒前
科研冲发布了新的文献求助10
9秒前
9秒前
三三完成签到,获得积分10
9秒前
毅诚菌完成签到,获得积分10
10秒前
Van完成签到,获得积分10
10秒前
吉他配三弦完成签到,获得积分10
10秒前
臭皮完成签到,获得积分10
10秒前
shengChen发布了新的文献求助10
11秒前
12秒前
嗯哼应助夏哈哈采纳,获得20
12秒前
学术疯狗完成签到,获得积分20
12秒前
12秒前
爆米花应助宏hong采纳,获得10
13秒前
13秒前
Pipper发布了新的文献求助10
13秒前
田様应助mao采纳,获得10
13秒前
1021完成签到,获得积分10
13秒前
wwww发布了新的文献求助10
14秒前
15秒前
四件完成签到,获得积分10
15秒前
16秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Semiconductor Process Reliability in Practice 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205934
求助须知:如何正确求助?哪些是违规求助? 2855162
关于积分的说明 8098503
捐赠科研通 2520331
什么是DOI,文献DOI怎么找? 1353083
科研通“疑难数据库(出版商)”最低求助积分说明 641698
邀请新用户注册赠送积分活动 612756