Distributional robustness and lateral transshipment for disaster relief logistics planning under demand ambiguity

模棱两可 CVAR公司 稳健优化 稳健性(进化) 数学优化 运筹学 计算机科学 业务 随机规划 线性规划 风险管理 预期短缺 数学 财务 生物化学 化学 基因 程序设计语言
作者
Duo Wang,Kai Yang,Lixing Yang,Shukai Li
出处
期刊:International Transactions in Operational Research [Wiley]
卷期号:31 (3): 1736-1761 被引量:13
标识
DOI:10.1111/itor.13227
摘要

Abstract This paper considers facility location, inventory pre‐positioning and vehicle routing as strategic and operational decisions corresponding to preparedness and response phases in disaster relief logistics planning. For balancing surpluses and shortages, an effective lateral transshipment strategy is proposed to evenly distribute the relief resources between warehouses after the disaster occurs. To handle ambiguity in the probability distribution of demand, we develop a risk‐averse two‐stage distributionally robust optimization (DRO) model for the disaster relief logistics planning problem, which specifies the worst‐case mean‐conditional value‐at‐risk (CVaR) as a risk measure. For computationally tractability, we transform the robust counterpart into its equivalent linear mixed‐integer programming model under the discrepancy‐based ambiguity set centered at the nominal (empirical) distributions on the observed demand from the historical data. We verify the effectiveness of the proposed DRO model and the value of lateral transshipment strategy by an illustrative small‐scale example. The numerical results show that the proposed DRO model has advantage on avoiding over‐conservative solutions compared to the classic robust optimization model. We also illustrate the applicability of the proposed DRO model by a real‐world case study of hurricanes in the southeastern United States. The computational results demonstrate that the proposed DRO model has superior out‐of‐sample performance and can mitigate the adverse effects of Optimizers' Curse compared with the traditional stochastic programming model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成哥完成签到,获得积分10
刚刚
灵巧的坤发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
OceanBlvdforme完成签到,获得积分10
1秒前
pigzhu发布了新的文献求助30
1秒前
梦梦完成签到,获得积分10
2秒前
2秒前
3秒前
魏煜佳发布了新的文献求助10
3秒前
4秒前
4秒前
潸潸发布了新的文献求助10
5秒前
脆弱的仙人掌完成签到,获得积分20
5秒前
成哥发布了新的文献求助10
5秒前
灵巧的坤完成签到,获得积分10
6秒前
王某人完成签到 ,获得积分10
6秒前
欢呼的明雪完成签到,获得积分10
7秒前
7秒前
嘉禾望岗发布了新的文献求助10
7秒前
大橙子完成签到,获得积分10
7秒前
东北信风完成签到 ,获得积分10
7秒前
今后应助祝顺遂采纳,获得10
7秒前
NADA完成签到,获得积分10
8秒前
长安完成签到,获得积分10
8秒前
AA完成签到,获得积分10
8秒前
NANA发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
13秒前
13秒前
14秒前
科研通AI5应助无悔呀采纳,获得10
14秒前
14秒前
littlewhite关注了科研通微信公众号
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759