Comparison of Convolutional Neural Network for Classifying Lung Diseases from Chest CT Images

卷积神经网络 人工智能 模式识别(心理学) 计算机科学 试验装置 联营 多类分类 上下文图像分类 二元分类 集合(抽象数据类型) 图像(数学) 支持向量机 程序设计语言
作者
Ramya Mohan,A. Rama,Kirupa Ganapathy
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (16) 被引量:2
标识
DOI:10.1142/s0218001422400031
摘要

This paper proposes a convolutional neural network for diagnosing various lung illnesses from chest CT images based on a customized Medical Image Analysis and Detection network (MIDNet18). With simplified model building, minimal complexity, easy technique, and high-performance accuracy, the MIDNet-18 CNN architecture classifies binary and multiclass medical images. Fourteen convolutional layers, 7 pooling layers, 4 dense layers, and 1 classification layer comprise the MIDNet-18 architecture. The medical image classification process involves training, validating, and testing the MIDNet-18 model. In the Lung CT image binary class dataset, 2214 images as training set, 1800 images as validation set, and 831 as test set are considered for classifying COVID images and normal lung images. In the multiclass dataset, 6720 images as training sets belonging to 3 classes, 3360 images as validation sets and 601 images as test sets are considered for classifying COVID, cancer images and normal images. Independent sample size calculated for binary classification is 26 samples for each group. Similarly, 10 sample sizes are calculated for multiclass dataset classification keeping GPower at 80%. To validate the performance of the MIDNet18 CNN architecture, the medical images of two different datasets are compared with existing models like LeNet-5, VGG-16, VGG-19, ResNet-50. In multiclass classification, the MIDNet-18 architecture gives better training accuracy and test accuracy, while the LeNet5 model obtained 92.6% and 95.9%, respectively. Similarly, VGG-16 is 89.3% and 77.2% respectively; VGG-19 is 85.8% and 85.4%, respectively; ResNet50 is 90.6% and 99%, respectively. For binary classification, the MIDNet18 architecture gives better training accuracy and test accuracy, while the LeNet-5 model has obtained 52.3% and 54.3%, respectively. Similarly, VGG 16 is 50.5% and 45.6%, respectively; VGG-19 is 50.6% and 45.6%, respectively; ResNet-50 is 96.1% and 98.4%, respectively. The classified images are further predicted using detectron-2 model and the results identify abnormalities (cancer, COVID-19) with 99% accuracy. The MIDNET18 is significantly more accurate than LeNet5, VGG19, VGG16 algorithms and is marginally better than the RESNET50 algorithm for the given lung binary dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET, LeNet5, VGG19, VGG16, and RESNET 50 ([Formula: see text])). The proposed MIDNet18 model is significantly more accurate than LeNet5, VGG19, VGG16, ResNet50 algorithms in classifying the diseases for the given multiclass lung dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET18, LeNet5, VGG19, VGG16, ResNet50 ([Formula: see text])).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
喵喵喵完成签到,获得积分20
刚刚
独摇之完成签到,获得积分10
刚刚
怡然雁凡完成签到,获得积分10
刚刚
顾jiu完成签到,获得积分10
1秒前
科研通AI5应助热依汗古丽采纳,获得10
1秒前
优秀剑愁完成签到 ,获得积分10
1秒前
敏感网络发布了新的文献求助50
2秒前
院士人启动完成签到,获得积分10
2秒前
3秒前
黄花菜完成签到 ,获得积分0
5秒前
5秒前
顾jiu发布了新的文献求助30
5秒前
Yimim完成签到,获得积分10
5秒前
6秒前
白菜完成签到,获得积分10
6秒前
7秒前
虚心山灵完成签到 ,获得积分20
7秒前
8秒前
白菜发布了新的文献求助30
9秒前
9秒前
xx发布了新的文献求助10
10秒前
Vii应助追寻的白安采纳,获得10
10秒前
科研通AI5应助Laus采纳,获得10
10秒前
小周发布了新的文献求助10
10秒前
万能图书馆应助自信鞯采纳,获得10
10秒前
SherlockLiu发布了新的文献求助30
11秒前
姚博士快毕业完成签到,获得积分10
12秒前
无语大王完成签到,获得积分10
12秒前
怡然的莫茗完成签到,获得积分10
13秒前
清秀的以云完成签到,获得积分20
14秒前
猫好好完成签到,获得积分10
15秒前
16秒前
hhzz完成签到,获得积分10
16秒前
16秒前
xhemers完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
17秒前
爱静静应助怡然的莫茗采纳,获得10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808