Comparison of Convolutional Neural Network for Classifying Lung Diseases from Chest CT Images

卷积神经网络 人工智能 模式识别(心理学) 计算机科学 试验装置 联营 多类分类 上下文图像分类 二元分类 集合(抽象数据类型) 图像(数学) 支持向量机 程序设计语言
作者
Ramya Mohan,A. Rama,Kirupa Ganapathy
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (16) 被引量:2
标识
DOI:10.1142/s0218001422400031
摘要

This paper proposes a convolutional neural network for diagnosing various lung illnesses from chest CT images based on a customized Medical Image Analysis and Detection network (MIDNet18). With simplified model building, minimal complexity, easy technique, and high-performance accuracy, the MIDNet-18 CNN architecture classifies binary and multiclass medical images. Fourteen convolutional layers, 7 pooling layers, 4 dense layers, and 1 classification layer comprise the MIDNet-18 architecture. The medical image classification process involves training, validating, and testing the MIDNet-18 model. In the Lung CT image binary class dataset, 2214 images as training set, 1800 images as validation set, and 831 as test set are considered for classifying COVID images and normal lung images. In the multiclass dataset, 6720 images as training sets belonging to 3 classes, 3360 images as validation sets and 601 images as test sets are considered for classifying COVID, cancer images and normal images. Independent sample size calculated for binary classification is 26 samples for each group. Similarly, 10 sample sizes are calculated for multiclass dataset classification keeping GPower at 80%. To validate the performance of the MIDNet18 CNN architecture, the medical images of two different datasets are compared with existing models like LeNet-5, VGG-16, VGG-19, ResNet-50. In multiclass classification, the MIDNet-18 architecture gives better training accuracy and test accuracy, while the LeNet5 model obtained 92.6% and 95.9%, respectively. Similarly, VGG-16 is 89.3% and 77.2% respectively; VGG-19 is 85.8% and 85.4%, respectively; ResNet50 is 90.6% and 99%, respectively. For binary classification, the MIDNet18 architecture gives better training accuracy and test accuracy, while the LeNet-5 model has obtained 52.3% and 54.3%, respectively. Similarly, VGG 16 is 50.5% and 45.6%, respectively; VGG-19 is 50.6% and 45.6%, respectively; ResNet-50 is 96.1% and 98.4%, respectively. The classified images are further predicted using detectron-2 model and the results identify abnormalities (cancer, COVID-19) with 99% accuracy. The MIDNET18 is significantly more accurate than LeNet5, VGG19, VGG16 algorithms and is marginally better than the RESNET50 algorithm for the given lung binary dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET, LeNet5, VGG19, VGG16, and RESNET 50 ([Formula: see text])). The proposed MIDNet18 model is significantly more accurate than LeNet5, VGG19, VGG16, ResNet50 algorithms in classifying the diseases for the given multiclass lung dataset (Bonferroni — one-way Anova and pairwise comparison of MIDNET18, LeNet5, VGG19, VGG16, ResNet50 ([Formula: see text])).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohang发布了新的文献求助10
1秒前
jackmilton完成签到 ,获得积分10
1秒前
AC赵先生发布了新的文献求助10
1秒前
维生素c完成签到 ,获得积分10
2秒前
4秒前
6秒前
6秒前
7秒前
所所应助兜兜采纳,获得10
7秒前
8秒前
小小虾完成签到,获得积分10
8秒前
8秒前
祁威发布了新的文献求助10
9秒前
kate完成签到,获得积分10
10秒前
2233发布了新的文献求助10
11秒前
小小虾发布了新的文献求助10
12秒前
12秒前
12秒前
加载中发布了新的文献求助10
14秒前
李健的小迷弟应助FallWhit3采纳,获得10
15秒前
李爱国应助学习采纳,获得10
16秒前
cqnusq发布了新的文献求助10
16秒前
吴雨完成签到 ,获得积分10
18秒前
沐风发布了新的文献求助10
18秒前
19秒前
19秒前
辉@应助赞zan采纳,获得30
20秒前
nn驳回了汉堡包应助
20秒前
端庄谷南发布了新的文献求助150
21秒前
田様应助辣辣采纳,获得10
22秒前
22秒前
HHYYAA完成签到 ,获得积分20
22秒前
22秒前
qpp完成签到,获得积分10
23秒前
任性迎南完成签到,获得积分10
24秒前
24秒前
Autken完成签到,获得积分20
24秒前
可爱的函函应助小冉采纳,获得10
25秒前
25秒前
HalfGumps发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943