已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying overall survival in 98 glioblastomas using VASARI features at 3T

医学 比例危险模型 生存分析 磁共振成像 内科学 对数秩检验 多元分析 胶质母细胞瘤 总体生存率 肿瘤科 核医学 放射科 癌症研究
作者
Banu Sacli-Bilmez,Zeynep Fırat,Osman Melih Topçuoğlu,Cumhur Kaan Yaltırık,Uǧur Türe,Esin Öztürk-Işık
出处
期刊:Clinical Imaging [Elsevier]
卷期号:93: 86-92 被引量:6
标识
DOI:10.1016/j.clinimag.2022.10.011
摘要

This study aims to evaluate qualitative and quantitative imaging metrics along with clinical features affecting overall survival in glioblastomas and to classify them into high survival and low survival groups based on 12, 19, and 24 months thresholds using machine learning.The cohort consisted of 98 adult glioblastomas. A standard brain tumor magnetic resonance (MR) imaging protocol, was performed on a 3T MR scanner. Visually Accessible REMBRANDT Images (VASARI) features were assessed. A Kaplan-Meier survival analysis followed by a log-rank test and multivariate Cox regression analysis were used to investigate the effects of VASARI features along with the age, gender, the extent of resection, pre- and post-KPS, ki67 and P53 mutation status on overall survival. Supervised machine learning algorithms were employed to predict the survival of glioblastoma patients based on 12, 19, and 24 months thresholds.Tumor location (p<0.001), the proportion of non-enhancing component (p=0.0482), and proportion of necrosis (p=0.02) were significantly associated with overall survival based on Kaplan-Meier analysis. Multivariate Cox regression analysis revealed that increases in proportion of non-enhancing component (p=0.040) and proportion of necrosis (p=0.039) were significantly associated with overall survival. Machine-learning models were successful in differentiating patients living longer than 12 months with 96.40% accuracy (sensitivity=97.22%, specificity=95.55%). The classification accuracies based on 19 and 24 months survival thresholds were 70.87% (sensitivity=83.02%, specificity=60.11%) and 74.66% (sensitivity=67.58%, specificity=82.08%), respectively.Employing clinical and VASARI features together resulted in a successful classification of glioblastomas that would have a longer overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助iook采纳,获得10
刚刚
Hein发布了新的文献求助20
1秒前
1秒前
YOLO发布了新的文献求助10
3秒前
liaoyoujiao发布了新的文献求助10
5秒前
sofardli发布了新的文献求助10
6秒前
远志完成签到,获得积分10
7秒前
研友_VZG7GZ应助学术小白采纳,获得10
9秒前
12秒前
12秒前
丘比特应助Ting采纳,获得10
13秒前
进取拼搏完成签到,获得积分10
14秒前
15秒前
慕容松发布了新的文献求助10
17秒前
墨雪晨曦发布了新的文献求助10
19秒前
爆米花应助YYY采纳,获得10
20秒前
大个应助迷你的水绿采纳,获得10
20秒前
liaoyoujiao发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
kkz完成签到,获得积分20
27秒前
kkz发布了新的文献求助30
31秒前
大模型应助墨雪晨曦采纳,获得10
31秒前
YYY发布了新的文献求助10
31秒前
mitty完成签到,获得积分10
32秒前
SciGPT应助动听文轩采纳,获得10
33秒前
sofardli完成签到,获得积分10
34秒前
尊敬的金针菇应助Hein采纳,获得20
34秒前
叮叮当当发布了新的文献求助30
36秒前
39秒前
华仔应助qboy采纳,获得10
39秒前
41秒前
42秒前
童年的回忆klwqqt完成签到,获得积分10
43秒前
甜北枳完成签到,获得积分10
45秒前
洁净的雪一完成签到 ,获得积分10
46秒前
清秀网络发布了新的文献求助10
46秒前
刘峥峥发布了新的文献求助10
46秒前
46秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407613
求助须知:如何正确求助?哪些是违规求助? 3012153
关于积分的说明 8852644
捐赠科研通 2699283
什么是DOI,文献DOI怎么找? 1479924
科研通“疑难数据库(出版商)”最低求助积分说明 684111
邀请新用户注册赠送积分活动 678358