亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features

列线图 无线电技术 接收机工作特性 医学 逻辑回归 放射科 肿瘤科 内科学
作者
Xiao-Ying Tan,Xiao Yang,Shudong Hu,Yuxi Ge,Qiong Wu,Jun Wang,Zongqiong Sun
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (1): 49-61 被引量:4
标识
DOI:10.3233/xst-221291
摘要

PURPOSE: To investigate the feasibility of predicting the early response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on CT radiomics nomogram before treatment. MATERIALS AND METHODS: The clinicopathological data and pre-treatment portal venous phase CT images of 180 consecutive AGC patients who received 3 cycles of NAC are retrospectively analyzed. They are randomly divided into training set (n = 120) and validation set (n = 60) and are categorized into effective group (n = 83) and ineffective group (n = 97) according to RECIST 1.1. Clinicopathological features are compared between two groups using Chi-Squared test. CT radiomic features of region of interest (ROI) for gastric tumors are extracted, filtered and minimized to select optimal features and develop radiomics model to predict the response to NAC using Pyradiomics software. Furthermore, a nomogram model is constructed with the radiomic and clinicopathological features via logistic regression analysis. The receiver operating characteristic (ROC) curve analysis is used to evaluate model performance. Additionally, the calibration curve is used to test the agreement between prediction probability of the nomogram and actual clinical findings, and the decision curve analysis (DCA) is performed to assess the clinical usage of the nomogram model. RESULTS: Four optimal radiomic features are selected to construct the radiomics model with the areas under ROC curve (AUC) of 0.754 and 0.743, sensitivity of 0.732 and 0.750, specificity of 0.729 and 0.708 in the training set and validation set, respectively. The nomogram model combining the radiomic feature with 2 clinicopathological features (Lauren type and clinical stage) results in AUCs of 0.841 and 0.838, sensitivity of 0.847 and 0.804, specificity of 0.771 and 0.794 in the training set and validation set, respectively. The calibration curve generates a concordance index of 0.912 indicating good agreement of the prediction results between the nomogram model and the actual clinical observation results. DCA shows that patients can receive higher net benefits within the threshold probability range from 0 to 1.0 in the nomogram model than in the radiomics model. CONCLUSION: CT radiomics nomogram is a potential useful tool to assist predicting the early response to NAC for AGC patients before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qvby3完成签到 ,获得积分10
1秒前
5秒前
11发布了新的文献求助10
6秒前
cc0514gr完成签到,获得积分10
9秒前
HMG1COA完成签到 ,获得积分10
9秒前
leslieo3o发布了新的文献求助10
10秒前
北克完成签到 ,获得积分10
13秒前
13秒前
橘猫123456完成签到,获得积分10
14秒前
小屁孩完成签到,获得积分10
16秒前
11发布了新的文献求助10
18秒前
annis发布了新的文献求助10
20秒前
隐形曼青应助11采纳,获得10
28秒前
0514gr完成签到,获得积分10
29秒前
林狗完成签到 ,获得积分10
30秒前
无限幻枫完成签到,获得积分10
31秒前
annis完成签到,获得积分10
32秒前
34秒前
36秒前
半剖天空发布了新的文献求助50
38秒前
酷波er应助牛顿不吃果采纳,获得10
40秒前
40秒前
11发布了新的文献求助10
41秒前
45秒前
Afterlife34发布了新的文献求助10
45秒前
347u完成签到 ,获得积分10
46秒前
田様应助11采纳,获得10
47秒前
LMH完成签到,获得积分10
48秒前
51秒前
foreverwhy完成签到 ,获得积分10
56秒前
58秒前
11发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李希发布了新的文献求助20
1分钟前
Vincent1990完成签到,获得积分10
1分钟前
打打应助李希采纳,获得20
1分钟前
科研通AI5应助积极泽洋采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210066
求助须知:如何正确求助?哪些是违规求助? 4387034
关于积分的说明 13662169
捐赠科研通 4246614
什么是DOI,文献DOI怎么找? 2329858
邀请新用户注册赠送积分活动 1327575
关于科研通互助平台的介绍 1280072