Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features

列线图 无线电技术 接收机工作特性 医学 逻辑回归 放射科 肿瘤科 内科学
作者
Xiao-Ying Tan,Xiao Yang,Shudong Hu,Yuxi Ge,Qiong Wu,Jun Wang,Zongqiong Sun
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (1): 49-61 被引量:4
标识
DOI:10.3233/xst-221291
摘要

PURPOSE: To investigate the feasibility of predicting the early response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on CT radiomics nomogram before treatment. MATERIALS AND METHODS: The clinicopathological data and pre-treatment portal venous phase CT images of 180 consecutive AGC patients who received 3 cycles of NAC are retrospectively analyzed. They are randomly divided into training set (n = 120) and validation set (n = 60) and are categorized into effective group (n = 83) and ineffective group (n = 97) according to RECIST 1.1. Clinicopathological features are compared between two groups using Chi-Squared test. CT radiomic features of region of interest (ROI) for gastric tumors are extracted, filtered and minimized to select optimal features and develop radiomics model to predict the response to NAC using Pyradiomics software. Furthermore, a nomogram model is constructed with the radiomic and clinicopathological features via logistic regression analysis. The receiver operating characteristic (ROC) curve analysis is used to evaluate model performance. Additionally, the calibration curve is used to test the agreement between prediction probability of the nomogram and actual clinical findings, and the decision curve analysis (DCA) is performed to assess the clinical usage of the nomogram model. RESULTS: Four optimal radiomic features are selected to construct the radiomics model with the areas under ROC curve (AUC) of 0.754 and 0.743, sensitivity of 0.732 and 0.750, specificity of 0.729 and 0.708 in the training set and validation set, respectively. The nomogram model combining the radiomic feature with 2 clinicopathological features (Lauren type and clinical stage) results in AUCs of 0.841 and 0.838, sensitivity of 0.847 and 0.804, specificity of 0.771 and 0.794 in the training set and validation set, respectively. The calibration curve generates a concordance index of 0.912 indicating good agreement of the prediction results between the nomogram model and the actual clinical observation results. DCA shows that patients can receive higher net benefits within the threshold probability range from 0 to 1.0 in the nomogram model than in the radiomics model. CONCLUSION: CT radiomics nomogram is a potential useful tool to assist predicting the early response to NAC for AGC patients before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助x5kyi采纳,获得10
刚刚
gaogao发布了新的文献求助30
1秒前
1秒前
是阿刁完成签到,获得积分10
2秒前
JY完成签到 ,获得积分10
2秒前
2秒前
光亮代玉完成签到 ,获得积分10
3秒前
3秒前
李朝霞发布了新的文献求助10
4秒前
Connie发布了新的文献求助10
6秒前
科研通AI2S应助活力青筠采纳,获得10
6秒前
6秒前
夏艳青发布了新的文献求助10
8秒前
yinyuli发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
lllyf发布了新的文献求助10
10秒前
10秒前
LJX发布了新的文献求助10
12秒前
12秒前
临时演员完成签到,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
小蘑菇应助刘亚赛采纳,获得10
15秒前
bkagyin应助大力的迎松采纳,获得10
15秒前
16秒前
16秒前
CodeCraft应助yinyuli采纳,获得10
17秒前
lovesonic发布了新的文献求助10
17秒前
拾叁完成签到 ,获得积分10
18秒前
小老虎的妈妈完成签到 ,获得积分10
19秒前
19秒前
乖猫要努力应助文复采纳,获得10
20秒前
燕子发布了新的文献求助10
20秒前
愤怒的小鸽子完成签到,获得积分10
20秒前
刘唐荣完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821