Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features

列线图 无线电技术 接收机工作特性 医学 逻辑回归 放射科 肿瘤科 内科学
作者
Xiao-Ying Tan,Xiao Yang,Shudong Hu,Yuxi Ge,Qiong Wu,Jun Wang,Zongqiong Sun
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (1): 49-61 被引量:4
标识
DOI:10.3233/xst-221291
摘要

PURPOSE: To investigate the feasibility of predicting the early response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on CT radiomics nomogram before treatment. MATERIALS AND METHODS: The clinicopathological data and pre-treatment portal venous phase CT images of 180 consecutive AGC patients who received 3 cycles of NAC are retrospectively analyzed. They are randomly divided into training set (n = 120) and validation set (n = 60) and are categorized into effective group (n = 83) and ineffective group (n = 97) according to RECIST 1.1. Clinicopathological features are compared between two groups using Chi-Squared test. CT radiomic features of region of interest (ROI) for gastric tumors are extracted, filtered and minimized to select optimal features and develop radiomics model to predict the response to NAC using Pyradiomics software. Furthermore, a nomogram model is constructed with the radiomic and clinicopathological features via logistic regression analysis. The receiver operating characteristic (ROC) curve analysis is used to evaluate model performance. Additionally, the calibration curve is used to test the agreement between prediction probability of the nomogram and actual clinical findings, and the decision curve analysis (DCA) is performed to assess the clinical usage of the nomogram model. RESULTS: Four optimal radiomic features are selected to construct the radiomics model with the areas under ROC curve (AUC) of 0.754 and 0.743, sensitivity of 0.732 and 0.750, specificity of 0.729 and 0.708 in the training set and validation set, respectively. The nomogram model combining the radiomic feature with 2 clinicopathological features (Lauren type and clinical stage) results in AUCs of 0.841 and 0.838, sensitivity of 0.847 and 0.804, specificity of 0.771 and 0.794 in the training set and validation set, respectively. The calibration curve generates a concordance index of 0.912 indicating good agreement of the prediction results between the nomogram model and the actual clinical observation results. DCA shows that patients can receive higher net benefits within the threshold probability range from 0 to 1.0 in the nomogram model than in the radiomics model. CONCLUSION: CT radiomics nomogram is a potential useful tool to assist predicting the early response to NAC for AGC patients before treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青街向晚完成签到,获得积分10
1秒前
2秒前
爱笑灵竹完成签到,获得积分10
2秒前
寂寞有声发布了新的文献求助10
2秒前
XT666完成签到,获得积分10
2秒前
大眼的平松完成签到,获得积分10
3秒前
3秒前
4秒前
巴啦啦啦发布了新的文献求助10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
8秒前
Aria应助lgh采纳,获得10
8秒前
huhu发布了新的文献求助10
8秒前
lll完成签到,获得积分10
10秒前
11秒前
散步的书包应助支妙采纳,获得10
13秒前
15秒前
Ava应助Katie采纳,获得10
16秒前
16秒前
英姑应助饼饼采纳,获得10
17秒前
18秒前
zho应助简单的南霜采纳,获得10
19秒前
19秒前
旋转门发布了新的文献求助10
20秒前
20秒前
zebs完成签到,获得积分10
20秒前
75986686发布了新的文献求助10
21秒前
酷波er应助huhu采纳,获得10
21秒前
22秒前
巴啦啦啦完成签到,获得积分10
22秒前
bjb1999发布了新的文献求助10
22秒前
Frank给史道夫的求助进行了留言
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919