Intelligent deep learning‐based hierarchical clustering for unstructured text data

计算机科学 文档聚类 聚类分析 非结构化数据 棕色聚类 tf–国际设计公司 层次聚类 人工智能 数据流聚类 预处理器 高维数据聚类 相关聚类 共识聚类 CURE数据聚类算法 数据挖掘 大数据 期限(时间) 物理 量子力学
作者
Bankapalli Jyothi,L. Sumalatha,Suneetha Eluri
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (28) 被引量:1
标识
DOI:10.1002/cpe.7388
摘要

Summary Document clustering is a technique used to split the collection of textual content into clusters or groups. In modern days, generally, the spectral clustering is utilized in machine learning domain. By using a selection of text mining algorithms, the diverse features of unstructured content is captured for ensuing in rich descriptions. The main aim of this article is to enhance a novel unstructured text data clustering by a developed natural language processing technique. The proposed model will undergo three stages, namely, preprocessing, features extraction, and clustering. Initially, the unstructured data is preprocessed by the techniques such as punctuation and stop word removal, stemming, and tokenization. Then, the features are extracted by the word2vector using continuous Bag of Words model and term frequency‐inverse document frequency. Then, unstructured features are performed by the hierarchical clustering using the optimizing the cut‐off distance by the improved sensing area‐based electric fish optimization (FISA‐EFO). Tuned deep neural network is used for improving the clustering model, which is proposed by same algorithm. Thus, the results reveal that the model provides better clustering accuracy than other clustering techniques while handling the unstructured text data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxmu6322发布了新的文献求助10
1秒前
英俊的铭应助美好幻梦采纳,获得10
1秒前
情怀应助称心的大米采纳,获得10
1秒前
woburenshini发布了新的文献求助30
1秒前
厘米完成签到,获得积分10
1秒前
2秒前
2秒前
健忘的安萱完成签到,获得积分10
2秒前
yznfly应助crise采纳,获得30
2秒前
朴素绮菱发布了新的文献求助10
2秒前
perway完成签到,获得积分10
2秒前
3秒前
欢呼海露完成签到,获得积分10
4秒前
王子安应助Ccccn采纳,获得10
4秒前
小二郎应助斯文黎云采纳,获得10
4秒前
光年发布了新的文献求助10
5秒前
ayin完成签到,获得积分10
5秒前
犹豫的夜南给犹豫的夜南的求助进行了留言
6秒前
6秒前
6秒前
6秒前
yui应助申申采纳,获得10
6秒前
6秒前
7秒前
万能图书馆应助foxp3采纳,获得30
7秒前
ding应助南木采纳,获得10
8秒前
如意怡完成签到,获得积分10
8秒前
moon发布了新的文献求助10
9秒前
伶俐烤鸡完成签到,获得积分10
9秒前
9秒前
魁梧的笑阳完成签到 ,获得积分10
10秒前
菠萝李完成签到,获得积分10
10秒前
11秒前
laryc完成签到,获得积分10
11秒前
卡卡西应助唐小鸭采纳,获得20
11秒前
热情的夏发布了新的文献求助10
11秒前
woburenshini完成签到,获得积分10
12秒前
悦耳若云发布了新的文献求助10
12秒前
orixero应助tuya采纳,获得20
13秒前
CodeCraft应助恋雅颖月采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180