Robotics in construction: A critical review of the reinforcement learning and imitation learning paradigms

机器人学 人工智能 强化学习 模仿 交叉口(航空) 计算机科学 机器人学习 机器人 机器学习 工程类 心理学 移动机器人 社会心理学 航空航天工程
作者
Juan Manuel Dávila Delgado,Lukumon O. Oyedele
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101787-101787 被引量:40
标识
DOI:10.1016/j.aei.2022.101787
摘要

The reinforcement and imitation learning paradigms have the potential to revolutionise robotics. Many successful developments have been reported in literature; however, these approaches have not been explored widely in robotics for construction. The objective of this paper is to consolidate, structure, and summarise research knowledge at the intersection of robotics, reinforcement learning, and construction. A two-strand approach to literature review was employed. A bottom-up approach to analyse in detail a selected number of relevant publications, and a top-down approach in which a large number of papers were analysed to identify common relevant themes and research trends. This study found that research on robotics for construction has not increased significantly since the 1980s, in terms of number of publications. Also, robotics for construction lacks the development of dedicated systems, which limits their effectiveness. Moreover, unlike manufacturing, construction's unstructured and dynamic characteristics are a major challenge for reinforcement and imitation learning approaches. This paper provides a very useful starting point to understating research on robotics for construction by (i) identifying the strengths and limitations of the reinforcement and imitation learning approaches, and (ii) by contextualising the construction robotics problem; both of which will aid to kick-start research on the subject or boost existing research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助肝帝采纳,获得10
刚刚
CYB完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
俏皮的石头应助文件撤销了驳回
4秒前
Ava应助shidandan采纳,获得10
5秒前
5秒前
6秒前
6秒前
SciGPT应助karma采纳,获得30
6秒前
8秒前
感动水杯发布了新的文献求助10
9秒前
共享精神应助一条大河采纳,获得10
9秒前
xiaixax完成签到,获得积分10
9秒前
Broadway Zhang完成签到,获得积分10
10秒前
10秒前
星辰大海应助易安采纳,获得10
11秒前
Wakeupsn发布了新的文献求助10
11秒前
wuniuniu完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
所所应助南滨采纳,获得10
13秒前
aleilei完成签到 ,获得积分10
13秒前
陈梓锋完成签到,获得积分10
14秒前
pzh完成签到 ,获得积分10
15秒前
llzzyyour发布了新的文献求助10
15秒前
shidandan发布了新的文献求助10
16秒前
宋晴也发布了新的文献求助10
18秒前
多糖发布了新的文献求助30
18秒前
zjw关闭了zjw文献求助
18秒前
22秒前
22秒前
达利园完成签到,获得积分10
23秒前
CipherSage应助Leo采纳,获得10
23秒前
卡卡发布了新的文献求助50
24秒前
多糖完成签到,获得积分10
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727967
求助须知:如何正确求助?哪些是违规求助? 3273048
关于积分的说明 9979641
捐赠科研通 2988422
什么是DOI,文献DOI怎么找? 1639628
邀请新用户注册赠送积分活动 778825
科研通“疑难数据库(出版商)”最低求助积分说明 747819