Development and evaluation of Nile tilapia (Oreochromis niloticus) body composition models

尼罗罗非鱼 俄勒冈 生物 渔业 作文(语言) 动物 罗非鱼 语言学 哲学
作者
A.I.G. Raposo,F. Soares,Luís E.C. Conceição,Luísa M.P. Valente,Tarcila Souza de Castro Silva
出处
期刊:Aquaculture [Elsevier BV]
卷期号:564: 739039-739039 被引量:1
标识
DOI:10.1016/j.aquaculture.2022.739039
摘要

Mathematical models can be used as an alternative to conventional analytical methods (AOAC), allowing to indirectly estimate the body composition of fish without, in some cases, being necessary to sacrifice animals. To develop models with high predictive capacity, in addition of having access to representative data, it is important to use calibration methods that minimize the estimation of the generalization error. In this work, Nile tilapia whole-body composition data were collected from 138 scientific publications, covering fish from 0.01 g to 1470 g. Predictive models were obtained for each body component using different combinations of models and calibration methods. The different combinations were evaluated through cross-validation approaches in order to select the models with the best predictive capacity. Such models were compared against other published Nile tilapia body composition models, using an independent validation dataset. The results show that model predictions are greatly affected by the type of model, calibration method and amount of calibration data available. Models calibrated under the assumption of multiplicative error had better predictive capacity than those calibrated assuming additive error, which indicates that, in this particular case, performing regression on log-transformed data, even for isometric models, is advantageous. From the models tested, the ones with the best predictive capacity are the allometric model (al_mu; calibrated assuming multiplicative error) and a robust hybrid model (hyb_rob; ensemble of isometric and allometric models, calibrated assuming multiplicative error using a robust regression method), with both having good prediction capacity when compared with models published by other authors. Although the results obtained support the hypothesis that Nile tilapia body composition is essentially allometric, isometric models can also potentially be used without much performance loss, if they are calibrated assuming multiplicative error (i.e., using log-transformed data).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不变皆旗发布了新的文献求助10
1秒前
我爱科研发布了新的文献求助10
1秒前
儒雅的傲旋完成签到,获得积分10
1秒前
1秒前
研招发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
calm完成签到,获得积分10
3秒前
叮当完成签到,获得积分10
4秒前
Derik完成签到,获得积分10
4秒前
小红完成签到,获得积分10
4秒前
lee发布了新的文献求助10
5秒前
5秒前
阿杜完成签到,获得积分10
5秒前
万能图书馆应助淡淡定采纳,获得10
6秒前
故然发布了新的文献求助10
6秒前
7秒前
7秒前
我爱科研完成签到,获得积分10
8秒前
9秒前
往事随风完成签到,获得积分10
9秒前
研招完成签到,获得积分10
9秒前
10秒前
Jeff发布了新的文献求助10
10秒前
明眸完成签到 ,获得积分10
10秒前
10秒前
benzene完成签到 ,获得积分10
11秒前
11秒前
Hengjian_Pu完成签到,获得积分10
11秒前
小蘑菇应助ssnha采纳,获得10
11秒前
诸觅双完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
大模型应助可爱尔安采纳,获得10
12秒前
黑天鹅学者完成签到 ,获得积分20
13秒前
glory_c发布了新的文献求助40
13秒前
知名不具完成签到 ,获得积分10
13秒前
echo发布了新的文献求助10
14秒前
今后应助易俊采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572