Multi-scale feature similarity-based weakly supervised lymphoma segmentation in PET/CT images

人工智能 模式识别(心理学) 分割 特征(语言学) 计算机科学 相似性(几何) 棱锥(几何) Sørensen–骰子系数 图像分割 数学 图像(数学) 几何学 语言学 哲学
作者
Zhengshan Huang,Yu Guo,Ning Zhang,Xian Huang,Pierre Decazes,Stéphanie Becker,Su Ruan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106230-106230 被引量:4
标识
DOI:10.1016/j.compbiomed.2022.106230
摘要

Accurate lymphoma segmentation in PET/CT images is important for evaluating Diffuse Large B-Cell Lymphoma (DLBCL) prognosis. As systemic multiple lymphomas, DLBCL lesions vary in number and size for different patients, which makes DLBCL labeling labor-intensive and time-consuming. To reduce the reliance on accurately labeled datasets, a weakly supervised deep learning method based on multi-scale feature similarity is proposed for automatic lymphoma segmentation. Weak labeling was performed by randomly dawning a small and salient lymphoma volume for the patient without accurate labels. A 3D V-Net is used as the backbone of the segmentation network and image features extracted in different convolutional layers are fused with the Atrous Spatial Pyramid Pooling (ASPP) module to generate multi-scale feature representations of input images. By imposing multi-scale feature consistency constraints on the predicted tumor regions as well as the labeled tumor regions, weakly labeled data can also be effectively used for network training. The cosine similarity, which has strong generalization, is exploited here to measure feature distances. The proposed method is evaluated with a PET/CT dataset of 147 lymphoma patients. Experimental results show that when using data, half of which have accurate labels and the other half have weak labels, the proposed method performed similarly to a fully supervised segmentation network and achieved an average Dice Similarity Coefficient (DSC) of 71.47%. The proposed method is able to reduce the requirement for expert annotations in deep learning-based lymphoma segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘤嘤怪啊完成签到 ,获得积分10
1秒前
3秒前
4秒前
5秒前
wjn完成签到,获得积分10
5秒前
陆人甲完成签到,获得积分10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
昏睡的绿海完成签到,获得积分10
9秒前
12秒前
demoliu发布了新的文献求助10
12秒前
明ming到此一游完成签到 ,获得积分10
12秒前
一袋星光完成签到 ,获得积分10
13秒前
13秒前
15秒前
端庄梦桃发布了新的文献求助10
16秒前
酷波er应助我就是KKKK采纳,获得10
16秒前
xxfsx应助tranphucthinh采纳,获得10
17秒前
小蘑菇发布了新的文献求助10
17秒前
书记发布了新的文献求助10
18秒前
19秒前
xiwaiwai发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
天天开心完成签到 ,获得积分10
22秒前
23秒前
24秒前
zhu完成签到,获得积分10
25秒前
所所应助demoliu采纳,获得10
25秒前
25秒前
26秒前
书记发布了新的文献求助10
26秒前
28秒前
张紫茹发布了新的文献求助10
29秒前
暴躁的念之完成签到 ,获得积分10
30秒前
魏阳完成签到 ,获得积分10
30秒前
31秒前
蓓蓓完成签到 ,获得积分10
33秒前
夜已深完成签到,获得积分10
33秒前
书记发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421053
求助须知:如何正确求助?哪些是违规求助? 4536013
关于积分的说明 14152513
捐赠科研通 4452755
什么是DOI,文献DOI怎么找? 2442549
邀请新用户注册赠送积分活动 1433935
关于科研通互助平台的介绍 1411056