Deterministic nanoantenna array design for stable plasmon-enhanced harmonic generation

等离子体子 梁(结构) 光学 谐波 材料科学 光电子学 光束直径 高次谐波产生 激光器 物理 激光束 量子力学 电压
作者
Tae-In Jeong,Dong Kyo Oh,San Kim,Jongkyoon Park,Yeseul Kim,Jungho Mun,Kyujung Kim,Soo Hoon Chew,Junsuk Rho,Seungchul Kim
出处
期刊:Nanophotonics [De Gruyter]
卷期号:12 (3): 619-629 被引量:2
标识
DOI:10.1515/nanoph-2022-0365
摘要

Abstract Plasmonic nanoantennas have been extensively explored to boost nonlinear optical processes due to their capabilities to confine optical fields on the nanoscale. In harmonic generation, nanoantenna array architectures are often employed to increase the number of emitters in order to efficiently enhance the harmonic emission. A small laser focus spot on the nanoantenna array maximizes the harmonic yield since it scales nonlinearly with the incident laser intensity. However, the nonlinear yield of the nanoantennas lying at the boundary of a focused beam may exhibit significant deviations in comparison to those at the center of the beam due to the Gaussian intensity distribution of the beam. This spatial beam inhomogeneity can cause power instability of the emitted harmonics when the lateral beam position is not stable which we observed in plasmon-enhanced third-harmonic generation (THG). Hence, we propose a method for deterministically designing the density of a nanoantenna array to decrease the instability of the beam position-dependent THG yield. This method is based on reducing the ratio between the number of ambiguous nanoantennas located at the beam boundary and the total number of nanoantennas within the beam diameter to increase the plasmon-enhanced THG stability, which we term as the ratio of ambiguity ( ROA ). We find that the coefficient of variation of the measured plasmonic THG yield enhancement decreases with the ROA . Thus, our method is beneficial for designing reliable sensors or nonlinear optical devices consisting of nanoantenna arrays for enhancing output signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助世界和平采纳,获得10
1秒前
水牛应助xxy采纳,获得20
1秒前
2秒前
2秒前
3秒前
3秒前
悠米完成签到,获得积分10
4秒前
林红豆发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研小狗完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
gaochunjing发布了新的文献求助10
8秒前
8秒前
任性糖豆完成签到,获得积分10
8秒前
爱吃香菜的哆啦A梦完成签到,获得积分20
8秒前
winifred完成签到 ,获得积分10
9秒前
bubble发布了新的文献求助10
9秒前
江峰发布了新的文献求助10
10秒前
无所屌谓发布了新的文献求助10
11秒前
hu发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
世界和平发布了新的文献求助10
13秒前
14秒前
xiaoma发布了新的文献求助10
16秒前
18秒前
兜兜发布了新的文献求助10
18秒前
小蘑菇应助无所屌谓采纳,获得10
19秒前
19秒前
hhh发布了新的文献求助10
19秒前
情怀应助shaung yang采纳,获得10
20秒前
运动医学阿澜完成签到,获得积分10
21秒前
科研通AI2S应助闫伊森采纳,获得10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721