Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer

医学 乳房磁振造影 乳腺癌 组内相关 放射科 乳房成像 有效扩散系数 核医学 双雷达 磁共振成像 对比度(视觉) 乳腺摄影术 癌症 人工智能 内科学 计算机科学 心理测量学 临床心理学
作者
Maggie Chung,Evan Calabrese,John Mongan,Kimberly M. Ray,Jessica H. Hayward,Tatiana Kelil,Ryan T. Sieberg,Nola M. Hylton,Bonnie N. Joe,Amie Y. Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:10
标识
DOI:10.1148/radiol.213199
摘要

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non-fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3-15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73-0.86; P < .001) without significant differences (mean differences, -0.8 to 0.8 mm; P = .36-.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉芮完成签到,获得积分10
1秒前
徐叽钰完成签到,获得积分10
2秒前
3秒前
zyy发布了新的文献求助50
6秒前
6秒前
chcui发布了新的文献求助10
7秒前
heavens发布了新的文献求助10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得10
12秒前
12秒前
不配.应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得10
12秒前
萧水白应助科研通管家采纳,获得10
12秒前
12秒前
万能图书馆应助Sophiaaa采纳,获得10
12秒前
Jingg完成签到,获得积分10
13秒前
Amber发布了新的文献求助10
14秒前
不配.应助小眼儿采纳,获得10
18秒前
22秒前
23秒前
alho完成签到 ,获得积分10
25秒前
科目三应助滴滴采纳,获得10
25秒前
樊川完成签到,获得积分10
25秒前
不打扰完成签到 ,获得积分10
26秒前
26秒前
superbeier发布了新的文献求助10
27秒前
TiAmo发布了新的文献求助10
28秒前
浅尝离白应助狂奔的蜗牛采纳,获得30
30秒前
姚慧知发布了新的文献求助10
33秒前
杨羕发布了新的文献求助10
36秒前
38秒前
相龙完成签到,获得积分20
39秒前
39秒前
qianqiu完成签到 ,获得积分10
39秒前
角鸮完成签到,获得积分10
42秒前
42秒前
李星星完成签到,获得积分10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140266
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797809
捐赠科研通 2447561
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194