清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer

医学 乳房磁振造影 乳腺癌 组内相关 放射科 乳房成像 有效扩散系数 核医学 双雷达 磁共振成像 对比度(视觉) 乳腺摄影术 癌症 人工智能 内科学 计算机科学 心理测量学 临床心理学
作者
Maggie Chung,Evan Calabrese,John Mongan,Kimberly M. Ray,Jessica H. Hayward,Tatiana Kelil,Ryan T. Sieberg,Nola M. Hylton,Bonnie N. Joe,Amie Y. Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:32
标识
DOI:10.1148/radiol.213199
摘要

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non–fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3–15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73–0.86; P < .001) without significant differences (mean differences, −0.8 to 0.8 mm; P = .36–.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修辛完成签到 ,获得积分10
3秒前
muriel完成签到,获得积分0
3秒前
世界需要我完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
36秒前
Qing完成签到 ,获得积分10
1分钟前
1分钟前
斩荆披棘发布了新的文献求助10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
1分钟前
酷酷小子完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
嘻哈小天才完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
miss完成签到,获得积分10
3分钟前
沈呆呆发布了新的文献求助10
3分钟前
晴莹完成签到 ,获得积分10
3分钟前
饱满的棒棒糖完成签到 ,获得积分10
4分钟前
4分钟前
时尚丹寒完成签到 ,获得积分10
4分钟前
紫熊发布了新的文献求助10
4分钟前
科研通AI5应助甜甜的紫菜采纳,获得10
4分钟前
紫熊完成签到,获得积分10
5分钟前
5分钟前
稻子完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
十一苗完成签到 ,获得积分10
6分钟前
fabius0351完成签到 ,获得积分10
6分钟前
6分钟前
完美世界应助甜甜的紫菜采纳,获得10
6分钟前
果冻橙完成签到,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
JG完成签到 ,获得积分10
7分钟前
ceeray23发布了新的文献求助50
8分钟前
方白秋完成签到,获得积分10
8分钟前
LINDENG2004完成签到 ,获得积分10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612389
求助须知:如何正确求助?哪些是违规求助? 4017632
关于积分的说明 12436538
捐赠科研通 3699747
什么是DOI,文献DOI怎么找? 2040303
邀请新用户注册赠送积分活动 1073123
科研通“疑难数据库(出版商)”最低求助积分说明 956841