Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer

医学 乳房磁振造影 乳腺癌 组内相关 放射科 乳房成像 有效扩散系数 核医学 双雷达 磁共振成像 对比度(视觉) 乳腺摄影术 癌症 人工智能 内科学 计算机科学 心理测量学 临床心理学
作者
Maggie Chung,Evan Calabrese,John Mongan,Kimberly M. Ray,Jessica H. Hayward,Tatiana Kelil,Ryan T. Sieberg,Nola M. Hylton,Bonnie N. Joe,Amie Y. Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:25
标识
DOI:10.1148/radiol.213199
摘要

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non–fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3–15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73–0.86; P < .001) without significant differences (mean differences, −0.8 to 0.8 mm; P = .36–.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧念寒完成签到,获得积分10
刚刚
玉ER完成签到,获得积分10
2秒前
希望天下0贩的0应助wei采纳,获得10
2秒前
北枳完成签到 ,获得积分10
6秒前
地精术士完成签到,获得积分10
7秒前
浙江嘉兴完成签到,获得积分10
7秒前
我是站长才怪应助通~采纳,获得10
9秒前
shiyu完成签到,获得积分10
9秒前
Herman_Chen完成签到,获得积分10
16秒前
Zn应助牛文文采纳,获得10
18秒前
18秒前
19秒前
贤惠的白开水完成签到 ,获得积分10
19秒前
英姑应助林林林采纳,获得10
20秒前
科研小民工应助Anquan采纳,获得30
20秒前
cyt9999发布了新的文献求助10
21秒前
天天快乐应助好难啊采纳,获得10
22秒前
干净的烧鹅完成签到,获得积分10
23秒前
24秒前
24秒前
在人中发布了新的文献求助10
25秒前
25秒前
fls221完成签到,获得积分10
26秒前
Laity完成签到,获得积分10
28秒前
28秒前
健忘捕发布了新的文献求助10
28秒前
林林林发布了新的文献求助10
29秒前
ok完成签到 ,获得积分10
30秒前
乐乐应助wewe采纳,获得30
30秒前
30秒前
拥有八根情丝完成签到 ,获得积分10
31秒前
科研通AI5应助Rex采纳,获得10
32秒前
33秒前
情怀应助樱桃小丸子采纳,获得10
34秒前
好难啊发布了新的文献求助10
35秒前
35秒前
39秒前
40秒前
40秒前
wewe完成签到,获得积分20
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851