Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer

医学 乳房磁振造影 乳腺癌 组内相关 放射科 乳房成像 有效扩散系数 核医学 双雷达 磁共振成像 对比度(视觉) 乳腺摄影术 癌症 人工智能 内科学 计算机科学 心理测量学 临床心理学
作者
Maggie Chung,Evan Calabrese,John Mongan,Kimberly M. Ray,Jessica H. Hayward,Tatiana Kelil,Ryan T. Sieberg,Nola M. Hylton,Bonnie N. Joe,Amie Y. Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:32
标识
DOI:10.1148/radiol.213199
摘要

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non–fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3–15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73–0.86; P < .001) without significant differences (mean differences, −0.8 to 0.8 mm; P = .36–.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T拐拐发布了新的文献求助10
刚刚
生动丑应助Ww采纳,获得10
刚刚
FL完成签到,获得积分10
1秒前
1秒前
余顾发布了新的文献求助10
1秒前
2秒前
Rondab应助蓝桉采纳,获得10
2秒前
朴素铁身发布了新的文献求助10
2秒前
安详可燕发布了新的文献求助10
2秒前
2秒前
一团发布了新的文献求助10
3秒前
言笑晏晏发布了新的文献求助10
3秒前
3秒前
Robert完成签到,获得积分10
3秒前
3秒前
4秒前
安静的卿完成签到,获得积分10
4秒前
CipherSage应助123采纳,获得10
4秒前
JamesPei应助小慧儿采纳,获得10
4秒前
常青发布了新的文献求助10
4秒前
4秒前
skyer完成签到,获得积分10
4秒前
搜集达人应助rlix采纳,获得10
4秒前
Lucas应助meethaha采纳,获得10
4秒前
昨夜書发布了新的文献求助10
5秒前
执着千筹完成签到,获得积分10
5秒前
6秒前
黑化小狗发布了新的文献求助10
6秒前
罗YF发布了新的文献求助10
6秒前
执着的若灵完成签到,获得积分10
6秒前
小杰完成签到 ,获得积分10
6秒前
昏睡的蟠桃应助LUKW采纳,获得150
6秒前
毛毛发布了新的文献求助10
7秒前
Pengsheng完成签到,获得积分10
7秒前
听语说发布了新的文献求助10
8秒前
费凝海完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
头发很多发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650