Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

同性恋 疾病 聚类分析 社交网络(社会语言学) 星团(航天器) 传染病(医学专业) 计算机科学 心理学 社会心理学 医学 计算机网络 人工智能 万维网 病理 社会化媒体
作者
Hendrik Nunner,Vincent Buskens,Alexandra Teslya,Mirjam Kretzschmar
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:312: 115350-115350 被引量:7
标识
DOI:10.1016/j.socscimed.2022.115350
摘要

Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social networks. Small-world like structures with densely connected clusters bridged by only a few connections, for example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health behavior homophily), however, might change the effect of such clusters on disease spread. To study the combined effect of health behavior homophily and small-world network properties on disease spread, we extend a previously developed ego-centered network formation model and agent-based simulation. Based on more than 80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed effects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by static network models of disease spread. Furthermore, this mechanism can be used to design information campaigns targeting proxies for groups with lower risk perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zsl完成签到,获得积分10
1秒前
hh发布了新的文献求助10
1秒前
啵啵完成签到,获得积分20
1秒前
瘦瘦发布了新的文献求助10
1秒前
1秒前
酷波er应助Carl采纳,获得10
2秒前
付研琪发布了新的文献求助10
2秒前
yang发布了新的文献求助10
3秒前
ML发布了新的文献求助10
3秒前
wxj发布了新的文献求助10
3秒前
echo完成签到 ,获得积分10
4秒前
赛特特特完成签到,获得积分10
5秒前
赵辉发布了新的文献求助10
5秒前
5秒前
下一回发布了新的文献求助10
5秒前
。。。完成签到,获得积分10
6秒前
高贵谷芹发布了新的文献求助10
6秒前
6秒前
fanshiying发布了新的文献求助20
6秒前
桐桐应助lxg采纳,获得10
6秒前
xiaofan发布了新的文献求助10
7秒前
沉默的小兔子完成签到,获得积分10
7秒前
NexusExplorer应助俊逸的翅膀采纳,获得10
8秒前
典雅访旋完成签到,获得积分10
8秒前
科研通AI6应助朴素小鸟胃采纳,获得30
8秒前
8秒前
9秒前
聪明的云完成签到 ,获得积分10
10秒前
烟花应助哦呵呵哈哈啦啦采纳,获得10
10秒前
fufu符发布了新的文献求助10
10秒前
10秒前
鲸落完成签到,获得积分20
10秒前
友好寻真发布了新的文献求助10
11秒前
SJJ应助lyxxll采纳,获得10
11秒前
轻松的语海完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592