Health behavior homophily can mitigate the spread of infectious diseases in small-world networks

同性恋 疾病 聚类分析 社交网络(社会语言学) 星团(航天器) 传染病(医学专业) 计算机科学 心理学 社会心理学 医学 计算机网络 人工智能 万维网 病理 社会化媒体
作者
Hendrik Nunner,Vincent Buskens,Alexandra Teslya,Mirjam Kretzschmar
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:312: 115350-115350 被引量:7
标识
DOI:10.1016/j.socscimed.2022.115350
摘要

Research has repeatedly shown that the spread of infectious diseases is influenced by properties of our social networks. Small-world like structures with densely connected clusters bridged by only a few connections, for example, are not only known to diminish disease spread, but also to increase the chance for a disease to spread to any part of the network. Clusters composed of individuals who show similar reactions to avoid infections (health behavior homophily), however, might change the effect of such clusters on disease spread. To study the combined effect of health behavior homophily and small-world network properties on disease spread, we extend a previously developed ego-centered network formation model and agent-based simulation. Based on more than 80,000 simulated epidemics on generated networks varying in clustering and homophily, as well as diseases varying in severity and infectivity, we predict that the existence of health behavior homophilous clusters reduce the number of infections, lower peak size, and flatten the curve of active cases. That is because agents perceiving higher risks of infections can protect their cluster from infections comparatively quickly by severing only a few bridging ties. A comparison with epidemics in static network structures shows that the incapability to act upon risk perceptions and the low connectivity between clusters in static networks lead to diametrically opposed effects with comparatively large epidemics and prolonged epidemics. These finding suggest that micro-level behavioral adaptation to health risks mitigate macro-level disease spread to an extent that is not captured by static network models of disease spread. Furthermore, this mechanism can be used to design information campaigns targeting proxies for groups with lower risk perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ycy发布了新的文献求助10
2秒前
至幸发布了新的文献求助10
2秒前
3秒前
时光完成签到 ,获得积分10
3秒前
豆儿嘚小豆儿应助orangel采纳,获得10
4秒前
科研工作者完成签到,获得积分10
4秒前
5秒前
5秒前
GOJO完成签到,获得积分10
6秒前
6秒前
今后应助安安静静的风车采纳,获得10
6秒前
星宿陨完成签到 ,获得积分10
8秒前
FrankJeffison发布了新的文献求助10
8秒前
蓝莓完成签到,获得积分10
9秒前
ww完成签到,获得积分10
10秒前
ycy完成签到,获得积分20
11秒前
11秒前
JerryZ发布了新的文献求助10
12秒前
雨碎寒江发布了新的文献求助10
13秒前
en发布了新的文献求助10
13秒前
14秒前
CHENCHEN完成签到 ,获得积分10
14秒前
yangya完成签到,获得积分10
16秒前
核桃应助梓里楠木采纳,获得10
20秒前
朴实海亦完成签到,获得积分10
21秒前
廖少跑不快完成签到,获得积分20
21秒前
眼睛大从雪完成签到,获得积分10
22秒前
嗯哼完成签到,获得积分10
22秒前
23秒前
zwy完成签到,获得积分10
23秒前
zzz完成签到,获得积分10
24秒前
光亮的千亦完成签到,获得积分10
24秒前
文静金针菇完成签到 ,获得积分10
28秒前
称心不尤完成签到 ,获得积分10
29秒前
金志铭发布了新的文献求助10
30秒前
30秒前
共享精神应助廖少跑不快采纳,获得10
31秒前
32秒前
浮游应助谭代涛采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226371
求助须知:如何正确求助?哪些是违规求助? 4397864
关于积分的说明 13687648
捐赠科研通 4262400
什么是DOI,文献DOI怎么找? 2339124
邀请新用户注册赠送积分活动 1336484
关于科研通互助平台的介绍 1292517