Using surface-enhanced Raman spectroscopy combined with chemometrics for black tea quality assessment during its fermentation process

化学计量学 红茶 拉曼光谱 发酵 过程(计算) 表面增强拉曼光谱 光谱学 化学 分析化学(期刊) 材料科学 工艺工程 生化工程 环境科学 食品科学 环境化学 计算机科学 色谱法 工程类 光学 物理 拉曼散射 量子力学 操作系统
作者
Xuelun Luo,Mostafa Gouda,Anand Babu Perumal,Zhenxiong Huang,Lei Lin,Yu Tang,Alireza Sanaeifar,Yong He,Xiaoli Li,Chunwang Dong
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:373: 132680-132680 被引量:24
标识
DOI:10.1016/j.snb.2022.132680
摘要

Developing a reliable and convenient method for monitoring the quality of black tea during fermentation could lead to a significant improvement in fermentation process. This work presented a rapid method based on surface-enhanced Raman spectroscopy (SERS) technology and chemometrics to determine the optimal fermentation stage and monitor the changes in 10 types of quality indicators of black tea throughout fermentation. First, the 10 different fermentation time points were clustered into 5 fermentation stages. Based on the SERS data, the fermentation stages were distinguished with an accuracy of 83.33% by one-dimensional ResNet18 (1D-ResNet18). Furthermore, important Raman peaks at 317.71, 619.59, 731.48, 956.08 and 1326.70 cm -1 were found for monitoring quality changes of black tea by density functional analysis and correlation analysis. The prediction r 2 for catechin (C) and epigallocatechin gallate (EGCG) reached 0.81 and 0.82, respectively, by integrated SERS with a one-dimensional convolutional neural network (1D-CNN). In conclusion, this study revealed the Raman fingerprint characteristics of key compounds associated with the fermentation quality of black tea, presenting an opportunity to quantify the quality changes of tea during fermentation using SERS data. With the monitoring method developed in this research, the optimal fermentation stage can be determined accurately, thus decreasing fermentation costs and improving tea quality. • A novel and highly interpretable SERS method for evaluation of black tea quality • A novel method for determining the optimal fermentation degree of black tea • SERS model simultaneously measure the content of nine quality indicators of black tea • Raman fingerprint peaks associated with the main components of black tea were found • Deep learning successfully mined feature of SERS for quantitative detection
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芋泥波波完成签到,获得积分10
3秒前
4秒前
璇璇璇发布了新的文献求助10
4秒前
在水一方应助疯狂的灵采纳,获得10
4秒前
yy发布了新的文献求助10
5秒前
IZhuangXH发布了新的文献求助20
7秒前
不安海燕发布了新的文献求助10
7秒前
科研通AI2S应助和平港湾采纳,获得10
7秒前
wsf2023发布了新的文献求助10
8秒前
潇洒自由基完成签到 ,获得积分10
8秒前
8秒前
共享精神应助务实保温杯采纳,获得30
9秒前
梁静宇完成签到 ,获得积分10
9秒前
Ava应助郝宝真采纳,获得10
10秒前
西西完成签到,获得积分10
11秒前
12秒前
丘比特应助m弟采纳,获得10
12秒前
12秒前
bkagyin应助乐观碧彤采纳,获得10
13秒前
louis完成签到,获得积分10
13秒前
13秒前
LLLLL发布了新的文献求助10
14秒前
哥惑完成签到 ,获得积分10
14秒前
科研通AI2S应助研友_8Kedgn采纳,获得10
16秒前
靜心发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
默默访风完成签到,获得积分10
19秒前
赘婿应助不安海燕采纳,获得10
20秒前
二指弹完成签到 ,获得积分10
20秒前
善良的短靴完成签到,获得积分10
22秒前
cv底层人发布了新的文献求助10
22秒前
22秒前
初七发布了新的文献求助30
22秒前
疯狂的灵发布了新的文献求助10
24秒前
可爱的函函应助靜心采纳,获得10
24秒前
啦啦啦啦发布了新的文献求助10
25秒前
Ricardo完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587