摘要
Brine (saline wastewater/water) from desalination, salt lakes, and industrial activities (e.g., pharmaceutical industries, oil & gas industries) has received a lot of attention around the world due to its adverse impact on the environment. Currently, several disposal methods have been applied; however, these methods are nowadays unsustainable. To tackle this problem, brine treatment and valorization is considered a promising strategy to eliminate brine discharge and recover valuable resources such as water, minerals, salts, metals, and energy. Brine valorization and resource recovery can be achieved via minimal and zero liquid discharge (MLD & ZLD) desalination systems. Commercially successful technologies such as reverse osmosis (RO) and distillation cannot be adopted as standalone technologies due to restrictions (e.g., osmotic pressure, high-energy/corrosion). Nonetheless, novel technologies such as forward osmosis (FO), membrane distillation (MD) can treat brine of high salinity and present high recovery rates. The extraction of several ions from brines is technically feasible. The minerals/salts composed of major ions (i.e., Na+, Cl−, Mg2+, Ca2+) can be useful in a variety of sectors, and their sale prices are reasonable. On the other hand, the extraction of scarce metals such as lithium, rubidium, and cesium can be extremely profitable as their sale prices are extremely higher compared to the sale prices of common salts. Nonetheless, the extraction of such precious metals is currently restricted to a laboratory scale. The MLD/ZLD systems have high energy consumption and thus are associated with high GHGs emissions as fossil fuels are commonly burned to produce the required energy. To make the MLD/ZLD systems more eco-friendly and carbon-neutral, the authors suggest integrating renewable energy sources such as solar energy, wind energy, geothermal energy, etc. Besides water, minerals, salts, metals, and energy can be harvested from brine. In particular, salinity gradient power can be generated. Salinity gradient power technologies have shown great potential in several bench-scale and pilot-scale implementations. Nonetheless, several improvements are required to promote their large-scale feasibility and viability. To establish a CO2-free and circular global economy, intensive research and development efforts should continue to be directed toward brine valorization and resource recovery using MLD/ZLD systems.