Patient-specific in vitro drug release testing coupled with in silico PBPK modeling to forecast the in vivo performance of oral extended-release levodopa formulations in Parkinson’s disease patients

基于生理学的药代动力学模型 体内 药代动力学 左旋多巴 生物信息学 最大值 药理学 药品 医学 体外 帕金森病 疾病 化学 内科学 生物 生物技术 基因 生物化学
作者
Erik Wollmer,Sandra Klein
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier BV]
卷期号:180: 101-118 被引量:6
标识
DOI:10.1016/j.ejpb.2022.09.015
摘要

Biorelevant in vitro release models are valuable analytical tools for oral drug development but often tailored to gastrointestinal conditions in 'average' healthy adults. However, predicting in vivo performance in individual patients whose gastrointestinal conditions do not match those of healthy adults would be of great value for optimizing oral drug therapy for such patients. This study focused on establishing patient-specific in vitro and in silico models to predict the in vivo performance of levodopa extended-release products in Parkinson's disease patients. Current knowledge on gastrointestinal conditions in these patients was incorporated into model development. Relevant in vivo pharmacokinetic data and patient-specific in vitro release data from a novel in vitro test setup were integrated into patient-specific physiologically-based pharmacokinetic models. AUC, cmax and tmax of the computed plasma profiles were calculated using PK-Sim®. For the products studied, levodopa plasma concentration-time profiles modeled using this novel approach compared far better with published average plasma profiles in Parkinson's disease patients than those derived from in vitro release data obtained from the 'average' healthy adult setup. Although further work is needed, results of this study highlight the importance of addressing patient-specific gastrointestinal conditions when aiming to predict drug release in such specific patient groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无忧发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
Dr_Zhang发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
Youcan发布了新的文献求助10
8秒前
8秒前
nuannuan完成签到 ,获得积分10
10秒前
善学以致用应助橘艾采纳,获得10
10秒前
11秒前
11秒前
北陆小猫发布了新的文献求助10
13秒前
布溜发布了新的文献求助10
13秒前
14秒前
NexusExplorer应助beta采纳,获得10
15秒前
15秒前
zdd发布了新的文献求助10
15秒前
17秒前
蛙蛙发布了新的文献求助10
21秒前
阿槿完成签到,获得积分10
22秒前
zhangyu应助科研鸟采纳,获得10
23秒前
23秒前
爆米花应助蛙蛙采纳,获得10
24秒前
Jasper应助风趣的胜采纳,获得10
25秒前
小二郎应助豆豆采纳,获得10
27秒前
北雁完成签到,获得积分10
27秒前
不良人96完成签到,获得积分10
28秒前
隐形曼青应助阿白采纳,获得10
30秒前
微笑猫咪发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
俊杰发布了新的文献求助10
35秒前
36秒前
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629