Spatiotemporal Attention for Early Prediction of Hepatocellular Carcinoma Based on Longitudinal Ultrasound Images

计算机科学 人工智能 卷积神经网络 人工神经网络 模式识别(心理学) 变压器 模态(人机交互) 特征提取 超声波 放射科 医学 量子力学 物理 电压
作者
Yiwen Zhang,Chengguang Hu,Liming Zhong,Yangda Song,Jiarun Sun,Meng Li,Lin Dai,Yuanping Zhou,Wei Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 534-543 被引量:4
标识
DOI:10.1007/978-3-031-16437-8_51
摘要

Early screening is an important way to reduce the mortality of hepatocellular carcinoma (HCC) and improve its prognosis. As a noninvasive, economic, and safe procedure, B-mode ultrasound is currently the most common imaging modality for diagnosing and monitoring HCC. However, because of the difficulty of extracting effective image features and modeling longitudinal data, few studies have focused on early prediction of HCC based on longitudinal ultrasound images. In this paper, to address the above challenges, we propose a spatiotemporal attention network (STA-HCC) that adopts a convolutional-neural-network–transformer framework. The convolutional neural network includes a feature-extraction backbone and a proposed regions-of-interest attention block, which learns to localize regions of interest automatically and extract effective features for HCC prediction. The transformer can capture long-range dependencies and nonlinear dynamics from ultrasound images through a multihead self-attention mechanism. Also, an age-based position embedding is proposed in the transformer to embed a more-appropriate positional relationship among the longitudinal ultrasound images. Experiments conducted on our dataset of 6170 samples collected from 619 cirrhotic subjects show that STA-HCC achieves impressive performance, with an area under the receiver-operating-characteristic curve of 77.5%, an accuracy of 70.5%, a sensitivity of 69.9%, and a specificity of 70.5%. The results show that our method achieves state-of-the-art performance compared with other popular sequence models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
banjiu368完成签到,获得积分10
刚刚
SCI来完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
娟子完成签到,获得积分20
1秒前
华仔应助伶俐耳机采纳,获得10
1秒前
1秒前
上官若男应助潇洒的怜蕾采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
俭朴晓凡发布了新的文献求助10
2秒前
自由依秋发布了新的文献求助10
2秒前
2秒前
3秒前
XZTX发布了新的文献求助10
3秒前
Deposit发布了新的文献求助10
3秒前
annie0701发布了新的文献求助10
3秒前
4秒前
jiangzhi完成签到,获得积分10
4秒前
4秒前
jfz发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
kmkz发布了新的文献求助10
5秒前
害羞山菡发布了新的文献求助10
6秒前
6秒前
6秒前
bo发布了新的文献求助10
6秒前
7秒前
Ferry发布了新的文献求助30
7秒前
Haibrar完成签到 ,获得积分10
7秒前
柚子发布了新的文献求助10
8秒前
socialbot发布了新的文献求助30
8秒前
共享精神应助DDDD晴天采纳,获得10
8秒前
JamesPei应助幸运周周周采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759108
求助须知:如何正确求助?哪些是违规求助? 5518880
关于积分的说明 15393113
捐赠科研通 4896215
什么是DOI,文献DOI怎么找? 2633621
邀请新用户注册赠送积分活动 1581612
关于科研通互助平台的介绍 1537213