Spatiotemporal Attention for Early Prediction of Hepatocellular Carcinoma Based on Longitudinal Ultrasound Images

计算机科学 人工智能 卷积神经网络 人工神经网络 模式识别(心理学) 变压器 模态(人机交互) 特征提取 超声波 放射科 医学 量子力学 物理 电压
作者
Yiwen Zhang,Chengguang Hu,Liming Zhong,Yangda Song,Jiarun Sun,Meng Li,Lin Dai,Yuanping Zhou,Wei Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 534-543 被引量:4
标识
DOI:10.1007/978-3-031-16437-8_51
摘要

Early screening is an important way to reduce the mortality of hepatocellular carcinoma (HCC) and improve its prognosis. As a noninvasive, economic, and safe procedure, B-mode ultrasound is currently the most common imaging modality for diagnosing and monitoring HCC. However, because of the difficulty of extracting effective image features and modeling longitudinal data, few studies have focused on early prediction of HCC based on longitudinal ultrasound images. In this paper, to address the above challenges, we propose a spatiotemporal attention network (STA-HCC) that adopts a convolutional-neural-network–transformer framework. The convolutional neural network includes a feature-extraction backbone and a proposed regions-of-interest attention block, which learns to localize regions of interest automatically and extract effective features for HCC prediction. The transformer can capture long-range dependencies and nonlinear dynamics from ultrasound images through a multihead self-attention mechanism. Also, an age-based position embedding is proposed in the transformer to embed a more-appropriate positional relationship among the longitudinal ultrasound images. Experiments conducted on our dataset of 6170 samples collected from 619 cirrhotic subjects show that STA-HCC achieves impressive performance, with an area under the receiver-operating-characteristic curve of 77.5%, an accuracy of 70.5%, a sensitivity of 69.9%, and a specificity of 70.5%. The results show that our method achieves state-of-the-art performance compared with other popular sequence models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中中中完成签到,获得积分10
1秒前
帝皇完成签到,获得积分10
1秒前
爆米花应助nzsqaq采纳,获得10
1秒前
YJ354完成签到,获得积分10
1秒前
1秒前
上官若男应助小郑不睡觉采纳,获得10
1秒前
黑囡发布了新的文献求助10
1秒前
link完成签到,获得积分10
2秒前
3秒前
点点发布了新的文献求助30
3秒前
3秒前
Akim应助小王同学采纳,获得10
3秒前
3秒前
4秒前
勤恳水风发布了新的文献求助10
5秒前
5秒前
粥粥完成签到,获得积分10
5秒前
鑫鑫子发布了新的文献求助10
6秒前
可可发布了新的文献求助10
6秒前
所所应助zkq采纳,获得10
6秒前
打打应助FFFFFFFFF采纳,获得10
7秒前
7秒前
在水一方应助谢昱采纳,获得10
7秒前
7秒前
负责无敌发布了新的文献求助10
8秒前
waddles完成签到,获得积分10
8秒前
fufu完成签到 ,获得积分10
8秒前
善学以致用应助chen采纳,获得10
8秒前
小二郎应助文心理采纳,获得10
8秒前
8秒前
gxch完成签到,获得积分20
9秒前
香蕉觅云应助hdd采纳,获得10
9秒前
shmily完成签到,获得积分10
9秒前
淡定发布了新的文献求助10
9秒前
Ferry完成签到 ,获得积分10
9秒前
Dr_Stars发布了新的文献求助10
10秒前
科研通AI6应助安十一采纳,获得10
10秒前
10秒前
可爱的函函应助hhan采纳,获得10
10秒前
哈哈哈嗝发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085903
求助须知:如何正确求助?哪些是违规求助? 4301887
关于积分的说明 13405716
捐赠科研通 4126924
什么是DOI,文献DOI怎么找? 2260099
邀请新用户注册赠送积分活动 1264194
关于科研通互助平台的介绍 1198415