作者
Wei Liang,Wenqing Zhao,Xinyue Liu,Jiayu Zheng,Zhuangzhuang Sun,Xiangzhen Ge,Huishan Shen,Gulnazym Ospankulova,Marat Muratkhan,Wenhao Li
摘要
To optimize the properties of native potato starch and to broaden its application in the food field, it was treated by electron beam irradiation (EBI) with different irradiation doses (6, 12, and 24 kGy) and frequencies (1, 2, 4, and 8 times), and the effects on the multi-scale structure, physicochemical properties, and in vitro digestibility were investigated. The results indicate that the increased dose aggravates starch degradation, generating more short chains and fragments, and reducing molecular weight, viscosity, and swelling power. Also, the higher dose facilitated the relative crystallinity, enhancing the ΔH and improving the RS content of potato starch. Furthermore, the repeated irradiation exhibited a cumulative dose effect: the short-range order, molecular weight, solubility, and swelling power improved after multiple irradiations. In addition, irradiation doses and frequencies neither destroyed starch's surface nor changed the polarized cross and growth ring. Also, all irradiated starch preserved starch's FT-IR spectrum and crystalline type. Moreover, multiple low-dose irradiations can not only improve the starch properties, but also achieve energy-saving purposes. Thus, as a rapid, green, non-thermal modification technology, EBI can impart low molecular weight, low viscosity and high solubility processing properties to starch, and improve its RS content without destroying the starch granular appearance.