已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyper-ES2T: Efficient Spatial–Spectral Transformer for the classification of hyperspectral remote sensing images

高光谱成像 计算机科学 人工智能 模式识别(心理学) 卷积神经网络 特征提取 利用 变压器 工程类 电气工程 电压 计算机安全
作者
Wenxuan Wang,Leiming Liu,Tianxiang Zhang,Jiachen Shen,Jing Wang,Jiangyun Li
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:113: 103005-103005 被引量:22
标识
DOI:10.1016/j.jag.2022.103005
摘要

In recent years, convolutional neural networks have continuously dominated the downstream tasks on hyperspectral remote sensing images with its strong local feature extraction capability. However, convolution operations cannot effectively capture the long-range dependencies and repeatedly stacking convolutional layers to pursue a hierarchical structure can only make this problem alleviated but not completely solved. Meantime, the appearance of Transformer happens to cope with this problem and provides an opportunity to capture long-distance dependencies between tokens. Although Transformer has been introduced into HSI classification field recently, most of these related works only focus on exploiting a single kind of spatial or spectral information and neglect to explore the optimal fusion method for these two different-level features. Therefore, to fully exploit the abundant spatial information and spectral correlations in HSIs in a highly effective and efficient way, we present the initial attempt to explore the Transformer architecture in a dual-branch manner and propose a novel bilateral classification network named Hyper-ES2T. Besides, the Aggregated Feature Enhancement Module is proposed for effective feature aggregation and further spatial–spectral feature enhancement. Furthermore, to tackle the problem of high computational costs brought by vanilla self-attention block in Transformer, we design the Efficient Multi-Head Self-Attention block, pursuing the trade-off between model accuracy and efficiency. The proposed Hyper-ES2T reaches new state-of-the-art performance and outperforms previous methods by a significant margin on four benchmark datasets for HSI classification, which demonstrates the powerful generalization ability and superior feature representation capability of our Hyper-ES2T. It can be anticipated that this work provides a novel insight to design network architecture based on Transformer with superior performance and great model efficiency, which may inspire more following research in this direction of HSI processing field. The source codes will be available at https://github.com/Wenxuan-1119/Hyper-ES2T.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晨曦完成签到,获得积分10
2秒前
自然蹇发布了新的文献求助10
3秒前
研友_08oErn完成签到,获得积分10
5秒前
8秒前
hh发布了新的文献求助10
8秒前
10秒前
10秒前
hehe发布了新的文献求助30
14秒前
14秒前
14秒前
宝宝时代发布了新的文献求助10
14秒前
科研通AI2S应助BEST采纳,获得10
15秒前
LuckyCookie发布了新的文献求助10
15秒前
15秒前
XyM发布了新的文献求助10
18秒前
zshjwk18完成签到,获得积分10
18秒前
11111111111发布了新的文献求助10
22秒前
Ava应助GIANTim采纳,获得10
22秒前
23秒前
sunshihaoya完成签到,获得积分20
28秒前
英姑应助LuckyCookie采纳,获得10
34秒前
34秒前
sunshihaoya发布了新的文献求助10
34秒前
36秒前
39秒前
39秒前
宝宝时代完成签到,获得积分10
41秒前
41秒前
SEAMUS完成签到,获得积分10
42秒前
jhanfglin完成签到,获得积分10
42秒前
43秒前
小沈最美发布了新的文献求助10
44秒前
我心飞扬完成签到,获得积分10
45秒前
zhurui发布了新的文献求助10
46秒前
西粤学完成签到,获得积分20
47秒前
汤圆发布了新的文献求助10
47秒前
48秒前
没烦恼发布了新的文献求助10
48秒前
48秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Diamonds: Properties, Synthesis and Applications 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099415
求助须知:如何正确求助?哪些是违规求助? 2751008
关于积分的说明 7610969
捐赠科研通 2402795
什么是DOI,文献DOI怎么找? 1274903
科研通“疑难数据库(出版商)”最低求助积分说明 616200
版权声明 599033