Displacement behavior interpretation and prediction model of concrete gravity dams located in cold area

流离失所(心理学) 流体静力平衡 重力坝 非线性系统 磁滞 结构工程 岩土工程 地质学 机械 工程类 有限元法 物理 心理学 量子力学 心理治疗师
作者
Dongyang Yuan,Chongshi Gu,Bowen Wei,Xiangnan Qin,Hao Gu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (4): 2384-2401 被引量:9
标识
DOI:10.1177/14759217221122368
摘要

The measured displacement-driven structural health monitoring (SHM) model is a significant approach to interpreting the influencing mechanism of environmental loads on dam displacement and to predicting the future operating behavior. Considering the large ambient temperature difference in cold area and the insufficient interpretive performance of the hydrostatic-seasonal-time (HST) model on thermal displacement behavior caused by the short-term dynamic fluctuations of ambient temperature, a hydrostatic-thermal-time (HTT) model considering hysteresis effect of boundary temperature is proposed to quantitatively analyze the influencing mechanism of environmental loads on displacement behavior of concrete gravity dams in cold area. Meanwhile, to improve the predictive performance of the proposed HTT model, whale optimization algorithm (WOA)-optimized gated recurrent unit (GRU) network is employed to effectively excavate the complex nonlinear relationship between dam displacement and its explanatory variables. A roller compacted concrete (RCC) gravity dam in cold area is taken as an example, and the cause of the disharmonious horizontal displacement behavior of an overflow dam crest is explained via the proposed HTT model and numerical simulation method. The conclusion is conducive for better understanding the displacement behavior of concrete dams in cold area. Meanwhile, engineering examples show that the proposed HTT model can reasonably interpret the thermal displacement behavior caused by the ambient temperature variations, and the WOA-optimized GRU network-based HTT model exhibits excellent fitting and predicting capabilities. A novel technique is provided for the accurate prediction of dam displacement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助陶l采纳,获得10
2秒前
4秒前
5秒前
彭于晏应助文人青采纳,获得10
7秒前
爱库珀应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
eric888应助科研通管家采纳,获得10
9秒前
聪明凡之应助科研通管家采纳,获得10
9秒前
9秒前
eric888应助科研通管家采纳,获得10
9秒前
王w应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
一一应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
Orange应助kelexh采纳,获得10
11秒前
caoruyuan发布了新的文献求助10
11秒前
身处人海完成签到,获得积分10
12秒前
dfghjkl完成签到,获得积分10
12秒前
杨好圆完成签到,获得积分10
12秒前
自由妙竹完成签到 ,获得积分10
15秒前
evvj发布了新的文献求助10
15秒前
mzrrong完成签到 ,获得积分10
15秒前
香蕉觅云应助西西采纳,获得10
15秒前
dfghjkl发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
lxj发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851