Displacement behavior interpretation and prediction model of concrete gravity dams located in cold area

流离失所(心理学) 流体静力平衡 重力坝 非线性系统 磁滞 结构工程 岩土工程 地质学 机械 工程类 有限元法 物理 心理学 量子力学 心理治疗师
作者
Dongyang Yuan,Chongshi Gu,Bowen Wei,Xiangnan Qin,Hao Gu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (4): 2384-2401 被引量:9
标识
DOI:10.1177/14759217221122368
摘要

The measured displacement-driven structural health monitoring (SHM) model is a significant approach to interpreting the influencing mechanism of environmental loads on dam displacement and to predicting the future operating behavior. Considering the large ambient temperature difference in cold area and the insufficient interpretive performance of the hydrostatic-seasonal-time (HST) model on thermal displacement behavior caused by the short-term dynamic fluctuations of ambient temperature, a hydrostatic-thermal-time (HTT) model considering hysteresis effect of boundary temperature is proposed to quantitatively analyze the influencing mechanism of environmental loads on displacement behavior of concrete gravity dams in cold area. Meanwhile, to improve the predictive performance of the proposed HTT model, whale optimization algorithm (WOA)-optimized gated recurrent unit (GRU) network is employed to effectively excavate the complex nonlinear relationship between dam displacement and its explanatory variables. A roller compacted concrete (RCC) gravity dam in cold area is taken as an example, and the cause of the disharmonious horizontal displacement behavior of an overflow dam crest is explained via the proposed HTT model and numerical simulation method. The conclusion is conducive for better understanding the displacement behavior of concrete dams in cold area. Meanwhile, engineering examples show that the proposed HTT model can reasonably interpret the thermal displacement behavior caused by the ambient temperature variations, and the WOA-optimized GRU network-based HTT model exhibits excellent fitting and predicting capabilities. A novel technique is provided for the accurate prediction of dam displacement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
润润轩轩发布了新的文献求助10
刚刚
刚刚
orixero应助韭黄采纳,获得10
1秒前
gnufgg完成签到,获得积分10
1秒前
科研通AI5应助tabor采纳,获得10
1秒前
1秒前
互助互惠互通完成签到,获得积分10
1秒前
脑洞疼应助ziyiziyi采纳,获得10
2秒前
2秒前
2秒前
屹舟完成签到,获得积分10
3秒前
zjudxn关注了科研通微信公众号
3秒前
4秒前
4秒前
科研通AI5应助hu970采纳,获得10
4秒前
4秒前
艺玲发布了新的文献求助10
5秒前
咚咚咚完成签到,获得积分10
5秒前
芋圆Z.完成签到,获得积分10
5秒前
atad2发布了新的文献求助10
5秒前
li梨完成签到,获得积分10
5秒前
6秒前
晏小敏完成签到,获得积分10
6秒前
爆米花应助风中寄云采纳,获得10
7秒前
屹舟发布了新的文献求助10
7秒前
Dou完成签到,获得积分10
7秒前
白泯完成签到,获得积分10
8秒前
1ssd发布了新的文献求助10
8秒前
667发布了新的文献求助10
8秒前
小二郎应助辰柒采纳,获得10
9秒前
10秒前
10秒前
clear完成签到,获得积分20
10秒前
10秒前
orixero应助congguitar采纳,获得10
10秒前
Evan完成签到,获得积分10
10秒前
YANG发布了新的文献求助10
11秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759