Role of Artificial Intelligence and Machine Learning in the prediction of the pain: A scoping systematic review

人工智能 机器学习 叙述性评论 支持向量机 梅德林 系统回顾 计算机科学 医学 多样性(控制论) 重症监护医学 政治学 法学
作者
Ravi Sankaran,Anand Kumar,Harilal Parasuram
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:236 (10): 1478-1491 被引量:9
标识
DOI:10.1177/09544119221122012
摘要

Artificial Intelligence in healthcare is growing quickly in diagnostics and treatment management. Despite the quantity and variety of studies its role in clinical care is not clear. To identify the evidence gaps and characteristics of the Artificial Intelligence and Machine Learning techniques in predicting/diagnosing the pain? Pubmed/Embase were searched from the inception to October 2021 for articles without any language restrictions specifically addressing the following: the accuracy of AI in pain considering Brain Imaging, Patient-reported measures, and Electrophysiology, the ability of AI to differentiate stratify severity/types of pain, the ability of AI to predict pain and lastly the most accurate AI technique for given inputs. All the included studies were on humans. Eight hundred forty abstracts were reviewed, and 23 articles were finally included. Identified records were independently screened and relevant data was extracted. We performed conceptual synthesis by grouping the studies using available concepts of AL/ML techniques in diagnosing pain. Then we summarized the number of features/physiological measurements. Structured tabulation synthesis was used to show patterns predictions along with a narrative commentary. A total of 23 articles, published between 2015 and 2020 from 12 countries were included. Most studies were experimental in design. The most common design was cross sectional. Chronic or acute pains were predicted more often. Compared to control, the pain prediction was in the range of 57%–96% by AI techniques. Support Vector Machine and deep learning showed higher accuracy for classifying pain. From this study, it can be inferred that AI/ML can be used to differentiate healthy controls from patients. It can also facilitate categorizing them into new and different clinical subgroups. Lastly, it can predict future pain. The limitations are with respect to studies done after the search period. AL/ ML has a supportive role in pain diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuGe发布了新的文献求助10
刚刚
奋斗刚发布了新的文献求助10
刚刚
oooo发布了新的文献求助10
1秒前
饼饼发布了新的文献求助10
1秒前
2秒前
沐言发布了新的文献求助10
2秒前
有魅力的ym完成签到,获得积分10
3秒前
长情凝丹发布了新的文献求助10
3秒前
汉堡包应助Jacob采纳,获得10
3秒前
3秒前
3秒前
丘比特应助细心老姆采纳,获得30
4秒前
4秒前
4秒前
5秒前
acuis发布了新的文献求助30
5秒前
lzc发布了新的文献求助10
5秒前
爆米花应助赵怡梦采纳,获得10
6秒前
Lucas应助oooo采纳,获得10
7秒前
8秒前
乔心发布了新的文献求助10
8秒前
9秒前
笨笨歌曲发布了新的文献求助10
9秒前
脑洞疼应助微弱de胖头采纳,获得10
10秒前
大模型应助monster0101采纳,获得10
10秒前
10秒前
11秒前
遥远的尧应助银色的膜采纳,获得10
12秒前
科研通AI2S应助孤独的无血采纳,获得10
12秒前
77完成签到,获得积分10
13秒前
奋斗刚完成签到,获得积分10
14秒前
14秒前
拼搏荠发布了新的文献求助10
15秒前
16秒前
Yixuedog完成签到,获得积分10
19秒前
科研通AI2S应助研友_8KX15L采纳,获得10
19秒前
21秒前
小芳儿发布了新的文献求助10
21秒前
orixero应助tz采纳,获得10
22秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919