选择性激光熔化
表面粗糙度
人工神经网络
材料科学
表面光洁度
过程(计算)
激光功率缩放
激光器
曲面(拓扑)
反向传播
功率(物理)
机械工程
声学
计算机科学
光学
复合材料
人工智能
工程类
几何学
微观结构
数学
物理
量子力学
操作系统
作者
Wang Zhang,Chunwang Luo,Qingyuan Ma,Zhenqiang Lin,Lan Yang,Jun Zheng,Xin Ge,Wei Zhang,Yuangang Liu,Jin‐Lei Tian
摘要
Abstract In this article, selective laser melting (SLM) equipment is used to print 316L stainless steel parts under different process parameters, and the surface roughness of the parts is measured. Based on back propagation neural networks (BP neural networks, BPNN), the upper surface roughness prediction model is established. The laser power, scanning speed, and scanning interval are used as model input, and the surface roughness of the workpiece is output. This model can easily and quickly predict the surface roughness of SLM metal printing, with high prediction accuracy, and can provide a basis for the optimization of SLM process parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI