亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The social process of coping with work‐related stressors online: A machine learning and interpretive data science approach

应对(心理学) 压力源 社会化媒体 计算机科学 心理学 社会心理学 万维网 精神科 临床心理学
作者
Sima Sajjadiani,Michael Daniels,Hsuan‐Che Huang
出处
期刊:Personnel Psychology [Wiley]
卷期号:77 (2): 321-373 被引量:9
标识
DOI:10.1111/peps.12538
摘要

Abstract People are increasingly turning to social media and online forums like Reddit to cope with work‐related concerns. Previous research suggests that how others respond can be an important determinant of the sharer's affective and well‐being outcomes. However, less is known about whether and how cues embedded in the content of what is shared can shape the type of responses that one receives from others, obscuring the joint and interactive role that both the sharer and listener may play in influencing the sharer's outcomes. In this study, we develop theory to advance our understanding of online coping with an explicitly social focus using computational grounded theorizing and machine learning (ML) techniques applied to a large corpus of work‐related conversations on Reddit. Specifically, our theoretical model sheds light on the dynamics of the online social coping process related to the domain of work. We show that how sharers and listeners interact and react to one another depends on the content of stressors shared, the social coping behaviors used when sharing, and whether the sharer and listener belong to the same occupational context. We contribute to the social coping literature in three ways. First, we clarify how social actors respond to cues embedded in the social coping attempt. Second, we examine the moderating role that such responses play in shaping sharer outcomes. Finally, we extend theory on social coping with work‐related stressors to the online domain. Taken together, this research highlights the importance of the dynamic interplay between sharer and listener in the context of online social coping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
己凡发布了新的文献求助10
刚刚
刚刚
糟糕的铁锤应助xujiejiuxi采纳,获得20
2秒前
superV发布了新的文献求助10
2秒前
小盼虫发布了新的文献求助10
7秒前
NexusExplorer应助superV采纳,获得10
20秒前
30秒前
嗯哼举报敏感绿竹求助涉嫌违规
30秒前
34秒前
37秒前
己凡发布了新的文献求助10
39秒前
50秒前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
牛马正在写文章完成签到,获得积分10
1分钟前
pfangjin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
己凡发布了新的文献求助10
1分钟前
caca完成签到,获得积分10
1分钟前
酷波er应助xiaodan采纳,获得10
2分钟前
2分钟前
CodeCraft应助爱吃橙子皮采纳,获得30
2分钟前
asd1576562308完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
daiyu发布了新的文献求助10
2分钟前
2分钟前
鳗鱼邪欢完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
褚青筠发布了新的文献求助10
2分钟前
褚青筠完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268709
求助须知:如何正确求助?哪些是违规求助? 2908083
关于积分的说明 8344531
捐赠科研通 2578530
什么是DOI,文献DOI怎么找? 1402108
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634415