插层(化学)
阴极
锰
电化学
储能
水溶液
电池(电)
纳米技术
化学
材料科学
电极
化学工程
无机化学
冶金
热力学
物理化学
物理
功率(物理)
工程类
作者
Yifei Yuan,Ryan Sharpe,Kun He,Chenghang Li,Mahmoud Tamadoni Saray,Tongchao Liu,Wentao Yao,Meng Cheng,Huile Jin,Shun Wang,Khalil Amine,Reza Shahbazian‐Yassar,M. Saïful Islam,Jun Lü
标识
DOI:10.1038/s41893-022-00919-3
摘要
Rechargeable aqueous Zn–MnO2 technology combines one of the oldest battery chemistries with favourable sustainability characteristics, including safety, cost and environmental compatibility. However, the ambiguous charge storage mechanism presents a challenge to fulfil the great potential of this energy technology. Here we leverage on advanced electron microscopy, electrochemical analysis and theoretical calculations to look into the intercalation chemistry within the cathode material, or α-MnO2 more specifically. We show that Zn2+ insertion into the cathode is unlikely in the aqueous system; rather, the charge storage process is dominated by proton intercalation to form α-HxMnO2. We further reveal anisotropic lattice change as a result of entering protons proceeding from the surface into the bulk of α-MnO2, which accounts for the structural failure and capacity decay of the electrode upon cycling. Our work not only advances the fundamental understanding of rechargeable zinc batteries but also suggests the possibility to optimize proton intercalation kinetics for better-performing cell designs. A rechargeable aqueous Zn–MnO2 battery features a combination of favourable sustainability characteristics from safety to cost. The authors deploy advanced characterizations and theoretical calculations to provide fresh insight into the charge storage mechanism, which not only closes an ongoing debate but suggests ways forward.
科研通智能强力驱动
Strongly Powered by AbleSci AI