已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-Supervised Multiview Feature Selection With Adaptive Graph Learning

特征选择 判别式 模式识别(心理学) 人工智能 计算机科学 图形 特征(语言学) 子空间拓扑 降维 理论计算机科学 语言学 哲学
作者
Bingbing Jiang,Xingyu Wu,Xiren Zhou,Yi Liu,Anthony G. Cohn,Weiguo Sheng,Huanhuan Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3615-3629 被引量:31
标识
DOI:10.1109/tnnls.2022.3194957
摘要

As data sources become ever more numerous with increased feature dimensionality, feature selection for multiview data has become an important technique in machine learning. Semi-supervised multiview feature selection (SMFS) focuses on the problem of how to obtain a discriminative feature subset from heterogeneous feature spaces in the case of abundant unlabeled data with little labeled data. Most existing methods suffer from unreliable similarity graph structure across different views since they separate the graph construction from feature selection and use the fixed graphs that are susceptible to noisy features. Furthermore, they directly concatenate multiple feature projections for feature selection, neglecting the contribution diversity among projections. To alleviate these problems, we present an SMFS to simultaneously select informative features and learn a unified graph through the data fusion from aspects of feature projection and similarity graph. Specifically, SMFS adaptively weights different feature projections and flexibly fuses them to form a joint weighted projection, preserving the complementarity and consensus of the original views. Moreover, an implicit graph fusion is devised to dynamically learn a compatible graph across views according to the similarity structure in the learned projection subspace, where the undesirable effects of noisy features are largely alleviated. A convergent method is derived to iteratively optimize SMFS. Experiments on various datasets validate the effectiveness and superiority of SMFS over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助UU采纳,获得10
1秒前
2秒前
高高凡霜发布了新的文献求助20
2秒前
wzwer123完成签到,获得积分10
3秒前
醉熏的灵完成签到 ,获得积分10
4秒前
4秒前
wzwer123发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
bkagyin应助刷卡哈萨克采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
藏沙完成签到 ,获得积分10
10秒前
fight发布了新的文献求助10
12秒前
zho发布了新的文献求助10
12秒前
LMH发布了新的文献求助10
13秒前
nana发布了新的文献求助30
13秒前
zeke发布了新的文献求助10
14秒前
小高完成签到 ,获得积分10
15秒前
NexusExplorer应助瘦瘦的涵瑶采纳,获得10
15秒前
丸子完成签到,获得积分10
15秒前
18秒前
18秒前
19秒前
xuan发布了新的文献求助10
20秒前
十七应助ApeiRolex采纳,获得10
21秒前
搜集达人应助大方的太君采纳,获得10
22秒前
娜娜子欧发布了新的文献求助10
22秒前
汉堡包应助zeke采纳,获得10
22秒前
24秒前
zzzzz发布了新的文献求助10
24秒前
Lucas应助尕尕娃娃328采纳,获得10
24秒前
25秒前
25秒前
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388158
求助须知:如何正确求助?哪些是违规求助? 3000648
关于积分的说明 8792564
捐赠科研通 2686677
什么是DOI,文献DOI怎么找? 1471749
科研通“疑难数据库(出版商)”最低求助积分说明 680532
邀请新用户注册赠送积分活动 673250