材料科学
杂原子
催化作用
析氧
电解质
阴极
电池(电)
无机化学
分解水
化学工程
纳米技术
电化学
电极
化学
物理化学
有机化学
功率(物理)
工程类
物理
光催化
量子力学
戒指(化学)
作者
Juan Jian,Ping Nie,Zhuo Wang,Yu Qiao,Hairui Wang,Chenyang Zhang,Xiangxin Xue,Luan Fang,Limin Chang
标识
DOI:10.1021/acsami.2c09725
摘要
Developing non-noble metal catalyst with super trifunctional activities for efficient overall water splitting (OWS) and rechargeable Zn-air battery (ZAB) is urgently needed. However, catalysts with excellent oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) performances are relatively few. Although metal-ionic-conductor K2Fe4O7 (KFO) can output large current densities for OER/HER even in 10.0 M KOH electrolyte, its water-splitting property still needs to be further improved. Herein, we introduced V5+ directly into KFO and synthesized the binder-free nickel foam (NF) basal V-KFO nanoparticles (labeled as V-KFO/NF). Both the theoretical analysis and actual experimental data certify that V5+ doping enhances the instinct water-splitting property of V-KFO/NF. Additionally, V-KFO/NF can directly serve as the air cathode of liquid/flexible ZABs. The assembled liquid ZAB can continue the charge-discharge cycling testing with a lower voltage gap (0.834 V) and a longer operation life (>550 h) at 10 mA cm-2. Meanwhile, the assembled flexible ZAB can drive the two-electrode water-splitting unit of V-KFO/NF and needs only 1.54 V to achieve the current density of 10 mA cm-2, which is much lower than that of KFO/NF (1.59 V). This work not only provides a novel and efficient trifunctional catalyst for a self-powered water-splitting device but also is the foundation support for other heteroatom-doped low-cost materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI