亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrocatalytic CO2-to-C2+ with Ampere-Level Current on Heteroatom-Engineered Copper via Tuning *CO Intermediate Coverage

杂原子 化学 催化作用 电解 法拉第效率 吸附 本体电解 电化学 密度泛函理论 无机化学 电流密度 电解水 化学工程 电极 物理化学 计算化学 有机化学 戒指(化学) 物理 量子力学 工程类 电解质
作者
Min Zheng,Pengtang Wang,Xing Zhi,Kang Yang,Yan Jiao,Jingjing Duan,Yao Zheng,Shi Zhang Qiao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (32): 14936-14944 被引量:181
标识
DOI:10.1021/jacs.2c06820
摘要

An ampere-level current density of CO2 electrolysis is critical to realize the industrial production of multicarbon (C2+) fuels. However, under such a large current density, the poor CO intermediate (*CO) coverage on the catalyst surface induces the competitive hydrogen evolution reaction, which hinders CO2 reduction reaction (CO2RR). Herein, we report reliable ampere-level CO2-to-C2+ electrolysis by heteroatom engineering on Cu catalysts. The Cu-based compounds with heteroatom (N, P, S, O) are electrochemically reduced to heteroatom-derived Cu with significant structural reconstruction under CO2RR conditions. It is found that N-engineered Cu (N-Cu) catalyst exhibits the best CO2-to-C2+ productivity with a remarkable Faradaic efficiency of 73.7% under -1100 mA cm-2 and an energy efficiency of 37.2% under -900 mA cm-2. Particularly, it achieves a C2+ partial current density of -909 mA cm-2 at -1.15 V versus reversible hydrogen electrode, which outperforms most reported Cu-based catalysts. In situ spectroscopy indicates that heteroatom engineering adjusts *CO adsorption on Cu surface and alters the local H proton consumption in solution. Density functional theory studies confirm that the high adsorption strength of *CO on N-Cu results from the depressed HER and promoted *CO adsorption on both bridge and atop sites of Cu, which greatly reduces the energy barrier for C-C coupling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cao采纳,获得10
36秒前
42秒前
51秒前
liu发布了新的文献求助10
56秒前
jyy应助科研通管家采纳,获得10
57秒前
子爵木完成签到 ,获得积分10
1分钟前
科研小刘发布了新的文献求助10
1分钟前
1分钟前
chi完成签到 ,获得积分10
1分钟前
大个应助科研小刘采纳,获得10
1分钟前
迷你的靖雁完成签到,获得积分10
2分钟前
乐乐完成签到,获得积分10
2分钟前
2分钟前
淡然平蓝发布了新的文献求助10
2分钟前
2分钟前
2分钟前
天才小熊猫完成签到,获得积分10
2分钟前
jiangchuansm发布了新的文献求助20
2分钟前
2分钟前
科研小刘发布了新的文献求助10
2分钟前
linuo完成签到,获得积分10
2分钟前
orixero应助Aira采纳,获得10
3分钟前
3分钟前
xiekunwhy完成签到,获得积分10
3分钟前
夜阑听雨完成签到,获得积分0
3分钟前
容若发布了新的文献求助10
3分钟前
远方发布了新的文献求助10
3分钟前
4分钟前
科研小刘发布了新的文献求助10
4分钟前
lingduyu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Ying完成签到,获得积分10
5分钟前
lingduyu完成签到,获得积分10
5分钟前
健忘沛春完成签到 ,获得积分10
6分钟前
Singularity应助Milesma采纳,获得10
6分钟前
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314