Identification of an EMT-related Gene Signature Predicting Recurrence in Stage II/III Colorectal Cancer

医学 列线图 肿瘤科 比例危险模型 结直肠癌 内科学 基因签名 阶段(地层学) 队列 癌症 基因 基因表达 生物 古生物学 生物化学 化学
作者
Haoyu Ren,Florian Bösch,Elise Pretzsch,Sven Jacob,C. Benedikt Westphalen,Julian Walter Holch,Jens Werner,Martin K. Angele
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:276 (5): 897-904 被引量:10
标识
DOI:10.1097/sla.0000000000005644
摘要

To identify a prognostic significant gene signature for predicting colorectal cancer (CRC) recurrence.Traditional prognostic risk assessment in stage II/III CRC patients remains controversial. Epithelial-mesenchymal transition is thought to be closely related to the malignant progression of tumors. Thus, it is promising to establish a prognostic model based on epithelial-mesenchymal transition-related gene (ERG) signature.We retrospectively analyzed transcriptome profiles and clinical information of 1780 stage II/III CRC patients from 15 public datasets. Coefficient variant analysis was used to select reference genes for normalizing gene expression levels. Univariate, LASSO, and multivariate Cox regression analyses were combined to develop the ERG signature predicting disease-free survival (DFS). The patients were divided into high-risk and low-risk based on the ERG signature recurrence risk score. The survival analysis was performed in different CRC cohorts.The proposed ERG signature contained 7 cancer-related ERGs and 3 reference genes. The ERG signature recurrence risk score was prognostically relevant in all cohorts ( P <0.05) and proved as an independent prognostic factor in the training cohort. In the pooled cohort, high-risk CRC patients exhibited worse DFS ( P <0.0001) and overall survival ( P =0.0058) than low-risk patients. The predictive performance of the ERG signature was superior to Oncotype DX colon cancer. An integrated decision tree and nomogram were developed to improve prognosis evaluation.The identified ERG signature is a promising and powerful biomarker predicting recurrence in CRC patients. Moreover, the presented ERG signature might help to stratify patients according to their tumor biology and contribute to personalized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mike完成签到 ,获得积分10
1秒前
1秒前
CY发布了新的文献求助10
1秒前
cco发布了新的文献求助10
2秒前
HY完成签到 ,获得积分10
3秒前
5秒前
5秒前
8秒前
金鱼咕噜噜luu完成签到,获得积分10
9秒前
9秒前
CY完成签到,获得积分10
10秒前
体贴汽车发布了新的文献求助10
10秒前
Rutin发布了新的文献求助10
11秒前
性静H情逸发布了新的文献求助10
12秒前
荀冰姬发布了新的文献求助10
13秒前
Hello应助keyanfentouzhe采纳,获得10
13秒前
顾矜应助buxiangshangxue采纳,获得10
14秒前
orixero应助Jenny采纳,获得10
15秒前
Owen应助ding采纳,获得50
17秒前
酷波er应助追寻大有采纳,获得10
19秒前
19秒前
打打应助图图采纳,获得10
19秒前
20秒前
臭臭完成签到,获得积分20
21秒前
科研通AI5应助细心语堂采纳,获得10
21秒前
荀冰姬完成签到,获得积分10
22秒前
22秒前
王sir完成签到,获得积分10
22秒前
xzg111完成签到,获得积分10
25秒前
念姬给念姬的求助进行了留言
25秒前
25秒前
阿胡完成签到 ,获得积分20
26秒前
闪闪凝梦完成签到 ,获得积分10
26秒前
ToTmmm发布了新的文献求助10
26秒前
李健应助HJX采纳,获得10
27秒前
27秒前
任性的梦菲完成签到,获得积分10
27秒前
蕾娜完成签到,获得积分20
28秒前
28秒前
蕾娜发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488