Identification of an EMT-related Gene Signature Predicting Recurrence in Stage II/III Colorectal Cancer

医学 列线图 肿瘤科 比例危险模型 结直肠癌 内科学 基因签名 阶段(地层学) 队列 癌症 基因 基因表达 生物 生物化学 古生物学 化学
作者
Haoyu Ren,Florian Bösch,Elise Pretzsch,Sven Jacob,C. Benedikt Westphalen,Julian Walter Holch,Jens Werner,Martin K. Angele
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:276 (5): 897-904 被引量:10
标识
DOI:10.1097/sla.0000000000005644
摘要

To identify a prognostic significant gene signature for predicting colorectal cancer (CRC) recurrence.Traditional prognostic risk assessment in stage II/III CRC patients remains controversial. Epithelial-mesenchymal transition is thought to be closely related to the malignant progression of tumors. Thus, it is promising to establish a prognostic model based on epithelial-mesenchymal transition-related gene (ERG) signature.We retrospectively analyzed transcriptome profiles and clinical information of 1780 stage II/III CRC patients from 15 public datasets. Coefficient variant analysis was used to select reference genes for normalizing gene expression levels. Univariate, LASSO, and multivariate Cox regression analyses were combined to develop the ERG signature predicting disease-free survival (DFS). The patients were divided into high-risk and low-risk based on the ERG signature recurrence risk score. The survival analysis was performed in different CRC cohorts.The proposed ERG signature contained 7 cancer-related ERGs and 3 reference genes. The ERG signature recurrence risk score was prognostically relevant in all cohorts ( P <0.05) and proved as an independent prognostic factor in the training cohort. In the pooled cohort, high-risk CRC patients exhibited worse DFS ( P <0.0001) and overall survival ( P =0.0058) than low-risk patients. The predictive performance of the ERG signature was superior to Oncotype DX colon cancer. An integrated decision tree and nomogram were developed to improve prognosis evaluation.The identified ERG signature is a promising and powerful biomarker predicting recurrence in CRC patients. Moreover, the presented ERG signature might help to stratify patients according to their tumor biology and contribute to personalized treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助tidongzhiwu采纳,获得10
刚刚
研友_LwlRen完成签到 ,获得积分10
1秒前
materials_发布了新的文献求助10
2秒前
称心的西牛完成签到 ,获得积分10
2秒前
踏实的无敌完成签到,获得积分10
2秒前
栀璃鸳挽发布了新的文献求助30
4秒前
Yogita完成签到,获得积分10
4秒前
dasheng_发布了新的文献求助10
4秒前
情怀应助超爱茶多酚采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
大地上的鱼完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
materials_完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
LjXiong完成签到,获得积分10
12秒前
13秒前
xiaoE发布了新的文献求助10
13秒前
JJJJJJJJJJJ发布了新的文献求助10
13秒前
Yygz314完成签到,获得积分10
14秒前
tidongzhiwu发布了新的文献求助10
15秒前
赘婿应助吴逸彪采纳,获得10
16秒前
16秒前
曾绍炜完成签到,获得积分10
17秒前
ZZ完成签到,获得积分10
18秒前
共享精神应助IDneverd采纳,获得10
18秒前
xiaoE完成签到,获得积分10
19秒前
七个小矮人完成签到,获得积分10
20秒前
20秒前
22秒前
mmllgg完成签到,获得积分20
22秒前
23秒前
李爱国应助sunshine采纳,获得10
24秒前
24秒前
研友_LX66qZ完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750