材料科学
钛酸锂
阳极
锂(药物)
钇
电化学
阴极
石墨
纳米技术
化学工程
锂离子电池
电池(电)
复合材料
电极
氧化物
冶金
物理化学
化学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Yun Zhang,Jun Huang,Nagahiro Saito,Xiaolong Yang,Zhengxi Zhang,Li Yang,Shin‐ichi Hirano
标识
DOI:10.1002/aenm.202200922
摘要
Abstract Graphite, as the dominant anode for commercial lithium‐ion batteries, features sluggish electrochemical kinetics and low potential close to lithium deposition, leading to poor rate capability and safety issues. Although titanium‐based oxides have received considerable attention, each alternative demonstrates unsatisfactory trade‐offs between capacity, operating potential, rate capability, and lifespan. Here, submicrometer‐sized lithium yttrium titanate (LYTO) is synthesized through facile sol–gel and ion‐exchange reactions. With an average operating potential of 0.3 V versus Li + /Li, the LYTO anode demonstrates a high specific capacity of 236 mAh g –1 and durable cycling performance of 98% capacity retention after 3000 cycles. Impressively, without additional modification, a high‐rate capability is achieved under a current density range from 0.5 C to 100 C (1 C = 200 mA g –1 ), e.g., delivering 112 and 87 mAh g –1 at 60 C and 100 C, respectively. Comprehensive characterizations and computational simulations reveal reversible solid‐solution reactions occurring in the LYTO framework with little lattice change and fast 2D Li + mobility achieved due to a low diffusion energy barrier. After incorporation with a LiFePO 4 cathode, the energy density of the as‐fabricated full cell reaches 2.4 times that of Li 4 Ti 5 O 12 /LiFePO 4 full cell. The double characteristics of LYTO provide a fresh identification for high‐performance anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI