自愈水凝胶
对偶(语法数字)
炎症
材料科学
双重角色
伤口愈合
生物医学工程
医学
高分子化学
化学
外科
内科学
组合化学
艺术
文学类
作者
Ji Jiang,Yuan Tian,Xiaoyang Wu,Mingze Zeng,Chengheng Wu,Dan Wei,Hongrong Luo,Jing Sun,Jie Ding,Hongsong Fan
摘要
Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management. The PHDNN6 hydrogel is based on a poly(N-isopropylacrylamide) (PNIPAM) matrix, integrated with methacrylated and dopamine-grafted hyaluronic acid (HA-MA-DA), which allows the dressing to be highly responsive to changes in wound temperature, enabling continuous and real-time monitoring of the wound microenvironment wirelessly. Besides, PHDNN6 is embedded with photothermal polydopamine nanoparticles (PDA NPs) that are loaded with a NO donor, N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6). When exposed to near-infrared (NIR) laser irradiation, these PDA@BNN6 nanoparticles release NO to provide potent antibacterial and anti-inflammatory effects. The integration of continuous wireless temperature monitoring with NO release within a single hydrogel dressing represents a significant advancement in clinical wound care. This dual-functional platform not only provides real-time diagnostic capabilities but also offers therapeutic interventions to manage wound infections and promote tissue regeneration. Our research highlights the potential of PHDNN6 to revolutionize wound management by offering a comprehensive solution that addresses both the diagnostic and therapeutic needs in wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI