Metaplasticity‐Enabled Graphene Quantum Dot Devices for Mitigating Catastrophic Forgetting in Artificial Neural Networks

变质塑性 神经形态工程学 遗忘 人工神经网络 计算机科学 突触可塑性 材料科学 人工智能 生物神经网络 量子点 神经科学 纳米技术 机器学习 生物 生物化学 语言学 哲学 受体
作者
Xuemeng Fan,Anzhe Chen,Zongwen Li,Zhihao Gong,Z. G. Wang,Guobin Zhang,Pengtao Li,Yang Xu,Hua Wang,Changhong Wang,Xiaolei Zhu,Rong Zhao,Bin Yu,Yishu Zhang
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202411237
摘要

Abstract The limitations of deep neural networks in continuous learning stem from oversimplifying the complexities of biological neural circuits, often neglecting the dynamic balance between memory stability and learning plasticity. In this study, artificial synaptic devices enhanced with graphene quantum dots (GQDs) that exhibit metaplasticity is introduced, a higher‐order form of synaptic plasticity that facilitates the dynamic regulation of memory and learning processes similar to those observed in biological systems. The GQDs‐assisted devices utilize interface‐mediated modifications in asymmetric conductive pathways, replicating classical synaptic plasticity mechanisms. This allows for repeatable and linearly programmable adjustments to future weight changes linked to historical weights. Incorporating metaplasticity is essential for achieving generalization within deep neural networks, which enables them to adapt more fluidly to new information while retaining previously acquired knowledge. The GQDs‐device‐based system achieved a 97% accuracy on the fourth MNIST dataset task, while consistently achieving performance levels above 94% on prior tasks. This performance substantiates the feasibility of directly transferring metaplasticity principles to deep neural networks, thereby addressing the challenges associated with catastrophic forgetting. These findings present a promising hardware solution for developing neuromorphic systems with robust and sustained learning capabilities that can effectively bridge the gap between artificial and biological neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
顺心从安发布了新的文献求助10
1秒前
纯真含灵完成签到,获得积分10
1秒前
3秒前
在水一方应助金金采纳,获得10
3秒前
4秒前
4秒前
jiayue完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
隐形曼青应助新司机采纳,获得10
6秒前
深情安青应助Zephyr采纳,获得10
6秒前
项初蝶完成签到,获得积分10
6秒前
7秒前
英勇水杯完成签到,获得积分10
7秒前
7秒前
一期一会发布了新的文献求助10
8秒前
安徽梁朝伟完成签到,获得积分10
9秒前
9秒前
啾啾完成签到,获得积分10
10秒前
SYLH应助爱尼可采纳,获得10
10秒前
认真雅阳发布了新的文献求助10
11秒前
11秒前
hebilie发布了新的文献求助10
11秒前
皮皮虾发布了新的文献求助10
12秒前
sedrakyan完成签到,获得积分10
12秒前
张大英完成签到,获得积分10
12秒前
LCC发布了新的文献求助20
13秒前
张震渝完成签到,获得积分10
13秒前
李想完成签到,获得积分10
14秒前
YY发布了新的文献求助10
14秒前
Liu发布了新的文献求助10
16秒前
16秒前
16秒前
yyyyyy完成签到,获得积分20
16秒前
慕青应助sedrakyan采纳,获得10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136