Fully-Connected Transformer for Multi-Source Image Fusion

计算机科学 人工智能 计算机视觉 变压器 图像融合 模式识别(心理学) 融合 图像(数学) 工程类 电压 电气工程 语言学 哲学
作者
Xiao Wu,Zihan Cao,Ting‐Zhu Huang,Liang-Jian Deng,Jocelyn Chanussot,Gemine Vivone
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:47 (3): 2071-2088 被引量:1
标识
DOI:10.1109/tpami.2024.3523364
摘要

Multi-source image fusion combines the information coming from multiple images into one data, thus improving imaging quality. This topic has aroused great interest in the community. How to integrate information from different sources is still a big challenge, although the existing self-attention based transformer methods can capture spatial and channel similarities. In this paper, we first discuss the mathematical concepts behind the proposed generalized self-attention mechanism, where the existing self-attentions are considered basic forms. The proposed mechanism employs multilinear algebra to drive the development of a novel fully-connected self-attention (FCSA) method to fully exploit local and non-local domain-specific correlations among multi-source images. Moreover, we propose a multi-source image representation embedding it into the FCSA framework as a non-local prior within an optimization problem. Some different fusion problems are unfolded into the proposed fully-connected transformer fusion network (FC-Former). More specifically, the concept of generalized self-attention can promote the potential development of self-attention. Hence, the FC-Former can be viewed as a network model unifying different fusion tasks. Compared with state-of-the-art methods, the proposed FC-Former method exhibits robust and superior performance, showing its capability of faithfully preserving information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助elsa采纳,获得10
刚刚
刚刚
共享精神应助天真咖啡豆采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
4秒前
fuyuan发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
6666完成签到,获得积分20
4秒前
芯止谭轩发布了新的文献求助20
5秒前
zoie0809发布了新的文献求助10
5秒前
道阻且长完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
6666发布了新的文献求助10
7秒前
1111完成签到,获得积分10
8秒前
高高一鸣完成签到 ,获得积分20
8秒前
8秒前
9秒前
10秒前
大模型应助壮观柔采纳,获得10
10秒前
一二三发布了新的文献求助20
11秒前
我是老大应助缪伟采纳,获得30
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423